Suppr超能文献

糖基转移酶的催化机制:对转化型N-乙酰葡糖胺基转移酶I的量子力学/分子力学混合研究

Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I.

作者信息

Kozmon Stanislav, Tvaroska Igor

机构信息

Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovak Republic.

出版信息

J Am Chem Soc. 2006 Dec 27;128(51):16921-7. doi: 10.1021/ja065944o.

Abstract

The Golgi glycosyltransferase, N-acetylglucosaminyltransferase I (GnT-I), catalyzes the transfer of a GlcNAc residue from the donor UDP-GlcNAc to the C2-hydroxyl group of a mannose residue in the trimannosyl core of the Man5GlcNAc2-Asn-X oligosaccharide. The catalytic mechanism of GnT-I was investigated using a hybrid quantum mechanical/molecular mechanical (QM/MM) method with a QM part containing 88 atoms treated with density functional theory (DFT) at the BP/TZP level. The remaining parts of a GnT-I complex, altogether 5633 atoms, were modeled using the AMBER molecular force field. A theoretical model of a Michaelis complex was built using the X-ray structure of GnT-I in complex with the donor having geometrical features consistent with kinetic studies. The QM(DFT)/MM model identified a concerted SN2-type of transition state with D291 as the catalytic base for the reaction in the enzyme active site. The TS model features nearly simultaneous nucleophilic addition and dissociation steps accompanied by the transfer of the nucleophile proton Hb2 to the catalytic base D291. The structure of the TS model is characterized by the Ob2-C1 and C1-O1 bond distances of 1.912 and 2.542 A, respectively. The activation energy for the proposed reaction mechanism was estimated to be approximately 19 kcal mol-1. The calculated alpha-deuterium kinetic isotope effect of 1.060 is consistent with the proposed reaction mechanism. Theoretical results also identified interactions between the Hb6 and beta-phosphate oxygen of the UDP and a low-barrier hydrogen bond between the nucleophile and the catalytic base D291. It is proposed that these interactions contribute to a stabilization of TS. This modeling study provided detailed insight into the mechanism of the GlcNAc transfer catalyzed by GnT-I, which is the first step in the conversion of high mannose oligosaccharides to complex and hybrid N-glycan structures.

摘要

高尔基体糖基转移酶N-乙酰葡糖胺基转移酶I(GnT-I)催化将一个GlcNAc残基从供体UDP-GlcNAc转移至Man5GlcNAc2-Asn-X寡糖三甘露糖核心中一个甘露糖残基的C2-羟基上。采用混合量子力学/分子力学(QM/MM)方法研究了GnT-I的催化机制,其中QM部分包含88个原子,采用BP/TZP水平的密度泛函理论(DFT)处理。GnT-I复合物的其余部分,共5633个原子,使用AMBER分子力场进行建模。利用GnT-I与具有与动力学研究一致几何特征的供体形成复合物的X射线结构构建了米氏复合物的理论模型。QM(DFT)/MM模型确定了一种协同的SN2型过渡态,其中D291作为酶活性位点反应的催化碱。过渡态模型的特征是亲核加成和解离步骤几乎同时发生,伴随着亲核质子Hb2转移至催化碱D291。过渡态模型的结构特征是Ob2-C1和C1-O1键距分别为1.912 Å和2.542 Å。所提出反应机制的活化能估计约为19 kcal mol-1。计算得到的α-氘动力学同位素效应为1.060,与所提出的反应机制一致。理论结果还确定了UDP的Hb6与β-磷酸氧之间的相互作用以及亲核试剂与催化碱D291之间的低势垒氢键。据推测,这些相互作用有助于过渡态的稳定。该建模研究为GnT-I催化的GlcNAc转移机制提供了详细见解,这是高甘露糖寡糖转化为复杂和杂合N-聚糖结构的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验