Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
J Am Chem Soc. 2021 Jan 27;143(3):1577-1589. doi: 10.1021/jacs.0c12096. Epub 2021 Jan 13.
We report a computational approach to evaluate the reaction mechanisms of glycosylation using molecular dynamics (AIMD) simulations in explicit solvent. The reaction pathways are simulated via free energy calculations based on metadynamics and trajectory simulations using Born-Oppenheimer molecular dynamics. We applied this approach to investigate the mechanisms of the glycosylation of glucosyl α-trichloroacetimidate with three acceptors (EtOH, -PrOH, and -BuOH) in three solvents (ACN, DCM, and MTBE). The reactants and the solvents are treated explicitly using density functional theory. We show that the profile of the free energy surface, the synchronicity of the transition state structure, and the time gap between leaving group dissociation and nucleophile association can be used as three complementary indicators to describe the glycosylation mechanism within the S1/S2 continuum for a given reaction. This approach provides a reliable means to rationalize and predict reaction mechanisms and to estimate lifetimes of oxocarbenium intermediates and their dependence on the glycosyl donor, acceptor, and solvent environment.
我们报告了一种使用分子动力学(AIMD)模拟在显式溶剂中评估糖基化反应机制的计算方法。通过基于元动力学的自由能计算和使用 Born-Oppenheimer 分子动力学的轨迹模拟来模拟反应途径。我们应用此方法研究了葡萄糖基α-三氯乙酰亚胺酯与三个受体(EtOH、-PrOH 和 -BuOH)在三种溶剂(ACN、DCM 和 MTBE)中糖基化的机制。反应物和溶剂使用密度泛函理论进行显式处理。我们表明,自由能表面的轮廓、过渡态结构的同步性以及离去基团解离和亲核试剂结合之间的时间间隔可以用作三个互补指标,用于描述给定反应在 S1/S2 连续体中的糖基化机制。该方法为合理化和预测反应机制以及估计氧杂碳正离子中间体的寿命及其对糖基供体、受体和溶剂环境的依赖性提供了一种可靠的手段。