Willner Itamar, Basnar Bernhard, Willner Bilha
Institute of Chemistry, The Hebrew University of Jerusalem, Israel.
FEBS J. 2007 Jan;274(2):302-9. doi: 10.1111/j.1742-4658.2006.05602.x. Epub 2006 Dec 20.
Biomolecule-nanoparticle (NP) [or quantum-dot (QD)] hybrid systems combine the recognition and biocatalytic properties of biomolecules with the unique electronic, optical, and catalytic features of NPs and yield composite materials with new functionalities. The biomolecule-NP hybrid systems allow the development of new biosensors, the synthesis of metallic nanowires, and the fabrication of nanostructured patterns of metallic or magnetic NPs on surfaces. These advances in nanobiotechnology are exemplified by the development of amperometric glucose sensors by the electrical contacting of redox enzymes by means of AuNPs, and the design of an optical glucose sensor by the biocatalytic growth of AuNPs. The biocatalytic growth of metallic NPs is used to fabricate Au and Ag nanowires on surfaces. The fluorescence properties of semiconductor QDs are used to develop competitive maltose biosensors and to probe the biocatalytic functions of proteases. Similarly, semiconductor NPs, associated with electrodes, are used to photoactivate bioelectrocatalytic cascades while generating photocurrents.
生物分子 - 纳米颗粒(NP)[或量子点(QD)]杂化系统将生物分子的识别和生物催化特性与纳米颗粒独特的电子、光学和催化特性相结合,产生具有新功能的复合材料。生物分子 - NP杂化系统有助于新型生物传感器的开发、金属纳米线的合成以及在表面制备金属或磁性NP的纳米结构图案。纳米生物技术的这些进展体现在通过金纳米颗粒实现氧化还原酶的电接触来开发安培型葡萄糖传感器,以及通过金纳米颗粒的生物催化生长来设计光学葡萄糖传感器。金属NP的生物催化生长用于在表面制备金和银纳米线。半导体量子点的荧光特性用于开发竞争性麦芽糖生物传感器并探测蛋白酶的生物催化功能。同样,与电极相关的半导体NP在产生光电流的同时用于光激活生物电催化级联反应。