Suppr超能文献

保护科学中的测量与意义。

Measurement and meaningfulness in conservation science.

作者信息

Wolman Abel G

机构信息

AGW Consulting, Inc., 855 NW Lincoln Street, White Salmon, WA 98672-4326, USA.

出版信息

Conserv Biol. 2006 Dec;20(6):1626-34. doi: 10.1111/j.1523-1739.2006.00531.x.

Abstract

Incomplete databases often require conservation scientists to estimate data either through expert judgment or other scoring, rating, and ranking procedures. At the same time, ecosystem complexity has led to the use of increasingly sophisticated algorithms and mathematical models to aid in conservation theorizing, planning, and decision making. Understanding the limitations imposed by the scales of measurement of conservation data is important for the development of sound conservation theory and policy. In particular, biodiversity valuation methods, systematic conservation planning algorithms, geographic information systems (GIS), and other conservation metrics and decision-support tools, when improperly applied to estimated data, may lead to conclusions based on numerical artifact rather than empirical evidence. The representational theory of measurement is described here, and the description includes definitions of the key concepts of scale, scale type, and meaningfulness. Representational measurement is the view that measurement entails the faithful assignment of numbers to empirical entities. These assignments form scales that are organized into a hierarchy of scale types. A statement involving scales is meaningful if its truth value is invariant under changes of scale within scale type. I apply these concepts to three examples of measurement practice in the conservation literature. The results of my analysis suggest that conservation scientists do not always investigate the scale type of estimated data and hence may derive results that are not meaningful. Recognizing the complexity of observation and measurement in conservation biology, and the constraints that measurement theory imposes, the examples are accompanied by suggestions for informal estimation of the scale type of conservation data and for conducting meaningful analysis and synthesis of this information.

摘要

不完整的数据库常常要求保护科学家通过专家判断或其他评分、评级及排名程序来估算数据。与此同时,生态系统的复杂性导致人们越来越多地使用复杂的算法和数学模型来辅助保护理论构建、规划及决策。了解保护数据测量尺度所带来的局限性对于完善保护理论和政策十分重要。特别是,生物多样性估值方法、系统保护规划算法、地理信息系统(GIS)以及其他保护指标和决策支持工具,如果不适当地应用于估算数据,可能会得出基于数字假象而非经验证据的结论。本文描述了测量的表征理论,其中包括尺度、尺度类型和意义等关键概念的定义。表征测量认为,测量需要将数字如实赋予经验实体。这些赋值形成尺度,并被组织成一个尺度类型层次结构。如果一个涉及尺度的陈述在尺度类型内的尺度变化下其真值不变,那么这个陈述就是有意义的。我将这些概念应用于保护文献中的三个测量实践例子。我的分析结果表明,保护科学家并不总是研究估算数据的尺度类型,因此可能会得出没有意义的结果。认识到保护生物学中观察和测量的复杂性以及测量理论所带来的限制,这些例子还附带了关于非正式估算保护数据尺度类型以及对这些信息进行有意义的分析和综合的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验