Suppr超能文献

来自一两个通道的钙离子控制着青蛙神经肌肉接头处单个囊泡的融合。

Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.

作者信息

Shahrezaei Vahid, Cao Alex, Delaney Kerry R

机构信息

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.

出版信息

J Neurosci. 2006 Dec 20;26(51):13240-9. doi: 10.1523/JNEUROSCI.1418-06.2006.

Abstract

Neurotransmitter release is triggered by the cooperative action of approximately five Ca2+ ions entering the presynaptic terminal through Ca2+ channels. Depending on the organization of the active zone (AZ), influx through one or many channels may be needed to cause fusion of a vesicle. Using a combination of experiments and modeling, we examined the number of channels that contribute Ca2+ for fusion of a single vesicle in a frog neuromuscular AZ. We compared Ca2+ influx to neurotransmitter release by measuring presynaptic action potential-evoked (AP-evoked) Ca2+ transients simultaneously with postsynaptic potentials. Ca2+ influx was manipulated by changing extracellular [Ca2+] (Ca(ext)) to alter the flux per channel or by reducing the number of open Ca2+ channels with omega-conotoxin GVIA (omega-CTX). When Ca(ext) was reduced, the exponent of the power relationship relating release to Ca2+ influx was 4.16 +/- 0.62 (SD; n = 4), consistent with a biochemical cooperativity of approximately 5. In contrast, reducing influx with omega-CTX yielded a power relationship of 1.7 +/- 0.44 (n = 5) for Ca(ext) of 1.8 mM and 2.12 +/- 0.44 for Ca(ext) of 0.45 mM (n = 5). Using geometrically realistic Monte Carlo simulations, we tracked Ca2+ ions as they entered through each channel and diffused in the terminal. Experimental and modeling data were consistent with two to six channel openings per AZ per AP; the Ca2+ that causes fusion of a single vesicle originates from one or two channels. Channel cooperativity depends mainly on the physical relationship between channels and vesicles and is insensitive to changes in the non-geometrical parameters of our model.

摘要

神经递质的释放是由大约五个钙离子通过钙离子通道进入突触前终末的协同作用触发的。根据活性区(AZ)的组织结构,可能需要一个或多个通道的内流来引发囊泡融合。我们结合实验和建模方法,研究了青蛙神经肌肉活性区中为单个囊泡融合提供钙离子的通道数量。我们通过同时测量突触前动作电位诱发(AP诱发)的钙离子瞬变和突触后电位,比较了钙离子内流与神经递质释放的关系。通过改变细胞外[Ca2+](Ca(ext))以改变每个通道的通量,或用ω-芋螺毒素GVIA(ω-CTX)减少开放钙离子通道的数量来操纵钙离子内流。当Ca(ext)降低时,将释放与钙离子内流相关的幂关系指数为4.16±0.62(标准差;n = 4),这与大约5的生化协同性一致。相比之下,用ω-CTX减少内流时,对于1.8 mM的Ca(ext),幂关系为1.7±0.44(n = 5),对于0.45 mM的Ca(ext),幂关系为2.12±0.44(n = 5)。使用几何逼真的蒙特卡罗模拟,我们追踪了钙离子通过每个通道进入并在终末中扩散的过程。实验和建模数据与每个动作电位每个活性区有两到六个通道开放一致;导致单个囊泡融合的钙离子来自一到两个通道。通道协同性主要取决于通道与囊泡之间的物理关系,并且对我们模型的非几何参数变化不敏感。

相似文献

1
Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction.
J Neurosci. 2006 Dec 20;26(51):13240-9. doi: 10.1523/JNEUROSCI.1418-06.2006.
4
Calcium channels and calcium-gated potassium channels at the frog neuromuscular junction.
J Physiol Paris. 1993;87(1):15-24. doi: 10.1016/0928-4257(93)90020-t.
5
Presynaptic calcium dynamics at the frog retinotectal synapse.
J Neurophysiol. 1996 Jul;76(1):381-400. doi: 10.1152/jn.1996.76.1.381.
6
Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone.
J Neurosci. 2004 Mar 24;24(12):2877-85. doi: 10.1523/JNEUROSCI.1660-03.2004.
7
Mitral cell presynaptic Ca(2+) influx and synaptic transmission in frog amygdala.
Neuroscience. 2001;104(1):137-51. doi: 10.1016/s0306-4522(01)00057-4.
9
Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals.
J Neurosci. 2022 Mar 23;42(12):2385-2403. doi: 10.1523/JNEUROSCI.2207-21.2022. Epub 2022 Jan 21.
10
Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals.
J Neurosci. 2011 Aug 3;31(31):11268-81. doi: 10.1523/JNEUROSCI.1394-11.2011.

引用本文的文献

1
Cellular and synaptic specializations for sub-millisecond precision in the mammalian auditory brainstem.
Front Cell Neurosci. 2025 May 19;19:1568506. doi: 10.3389/fncel.2025.1568506. eCollection 2025.
2
Nano-organization of synaptic calcium signaling.
Biochem Soc Trans. 2024 Jun 26;52(3):1459-1471. doi: 10.1042/BST20231385.
3
Spontaneous neurotransmission at evocable synapses predicts their responsiveness to action potentials.
Front Cell Neurosci. 2023 Mar 8;17:1129417. doi: 10.3389/fncel.2023.1129417. eCollection 2023.
4
Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites.
Front Synaptic Neurosci. 2022 Jun 13;14:917285. doi: 10.3389/fnsyn.2022.917285. eCollection 2022.
5
Dynamics of Neuromuscular Transmission Reproduced by Calcium-Dependent and Reversible Serial Transitions in the Vesicle Fusion Complex.
Front Synaptic Neurosci. 2022 Feb 15;13:785361. doi: 10.3389/fnsyn.2021.785361. eCollection 2021.
6
Single Calcium Channel Nanodomains Drive Presynaptic Calcium Entry at Lamprey Reticulospinal Presynaptic Terminals.
J Neurosci. 2022 Mar 23;42(12):2385-2403. doi: 10.1523/JNEUROSCI.2207-21.2022. Epub 2022 Jan 21.
8
9
Nanomachinery Organizing Release at Neuronal and Ribbon Synapses.
Int J Mol Sci. 2019 Apr 30;20(9):2147. doi: 10.3390/ijms20092147.
10
Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction.
Curr Opin Physiol. 2018 Aug;4:15-24. doi: 10.1016/j.cophys.2018.03.004. Epub 2018 Mar 17.

本文引用的文献

1
Proportion of N-type calcium current activated by action potential stimuli.
J Neurophysiol. 2005 Dec;94(6):3762-70. doi: 10.1152/jn.01289.2004. Epub 2005 Aug 17.
2
Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release.
J Neurophysiol. 2005 Sep;94(3):1912-9. doi: 10.1152/jn.00256.2005. Epub 2005 May 11.
3
Developmental transformation of the release modality at the calyx of Held synapse.
J Neurosci. 2005 Apr 20;25(16):4131-40. doi: 10.1523/JNEUROSCI.0350-05.2005.
4
Control of synaptic strength and timing by the release-site Ca2+ signal.
Nat Neurosci. 2005 Apr;8(4):426-34. doi: 10.1038/nn1417. Epub 2005 Mar 6.
5
A unified model of presynaptic release site gating by calcium channel domains.
Eur J Neurosci. 2005 Jan;21(1):278-82. doi: 10.1111/j.1460-9568.2004.03841.x.
7
Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone.
J Neurosci. 2004 Mar 24;24(12):2877-85. doi: 10.1523/JNEUROSCI.1660-03.2004.
8
Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.
Eur J Neurosci. 2003 Oct;18(8):2403-7. doi: 10.1046/j.1460-9568.2003.02948.x.
9
Quantal components of the end-plate potential.
J Physiol. 1954 Jun 28;124(3):560-73. doi: 10.1113/jphysiol.1954.sp005129.
10
Presynaptic calcium influx, neurotransmitter release, and neuromuscular disease.
Physiol Behav. 2002 Dec;77(4-5):507-12. doi: 10.1016/s0031-9384(02)00937-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验