Suppr超能文献

分子水平的Ca2+通道与突触小泡共定位对Ca2+微区和神经递质胞吐作用的影响:一项蒙特卡洛研究

Consequences of molecular-level Ca2+ channel and synaptic vesicle colocalization for the Ca2+ microdomain and neurotransmitter exocytosis: a monte carlo study.

作者信息

Shahrezaei Vahid, Delaney Kerry R

机构信息

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

Biophys J. 2004 Oct;87(4):2352-64. doi: 10.1529/biophysj.104.043380.

Abstract

Morphological and biochemical studies indicate association between voltage-gated Ca2+ channels and the vesicle docking complex at vertebrate presynaptic active zones, which constrain the separation between some Ca2+ channels and vesicles to 20 nm or less. To address the effect of the precise geometrical relationship among the vesicles, the Ca2+ channel, and the proteins of the release machinery on neurotransmitter release, we developed a Monte Carlo simulation of Ca2+ diffusion and buffering with nanometer resolution. We find that the presence of a vesicle as a diffusion barrier alters the shape of the Ca2+ microdomain of a single Ca2+ channel around the vesicle. This effect is maximal in the vicinity of the vesicle and depends critically on the vesicle's distance from the plasmalemma. Ca2+-sensor(s) for release would be exposed to markedly different [Ca2+], varying by up to 13-fold, depending on their position around the vesicle. As a result, the precise position of Ca2+-sensor(s) with respect to the vesicle and the channel can be critical to determining the release probability. Variation in the position of Ca2+-sensor molecule(s) and their accessibility could be an important source of heterogeneity in vesicle release probability.

摘要

形态学和生物化学研究表明,电压门控Ca2+通道与脊椎动物突触前活跃区的囊泡对接复合体之间存在关联,这将一些Ca2+通道与囊泡之间的距离限制在20纳米或更小。为了研究囊泡、Ca2+通道和释放机制的蛋白质之间精确的几何关系对神经递质释放的影响,我们开发了一种具有纳米分辨率的Ca2+扩散和缓冲的蒙特卡罗模拟。我们发现,作为扩散屏障的囊泡的存在改变了囊泡周围单个Ca2+通道的Ca2+微区的形状。这种效应在囊泡附近最大,并且严重依赖于囊泡与质膜的距离。用于释放的Ca2+传感器将暴露于明显不同的[Ca2+],根据它们在囊泡周围的位置,变化幅度可达13倍。因此,Ca2+传感器相对于囊泡和通道的精确位置对于确定释放概率可能至关重要。Ca2+传感器分子位置的变化及其可及性可能是囊泡释放概率异质性的重要来源。

相似文献

2
Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release.
J Neurophysiol. 2005 Sep;94(3):1912-9. doi: 10.1152/jn.00256.2005. Epub 2005 May 11.
4
Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis.
Nature. 2003 Jun 26;423(6943):939-48. doi: 10.1038/nature01755.
6
Calcium regulates exocytosis at the level of single vesicles.
Nat Neurosci. 2003 Aug;6(8):846-53. doi: 10.1038/nn1087.
7
RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels.
Nat Neurosci. 2007 Jun;10(6):691-701. doi: 10.1038/nn1904. Epub 2007 May 13.
8
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Cell Calcium. 2005 May;37(5):483-8. doi: 10.1016/j.ceca.2005.01.017.
9
Calcium channel regulation and presynaptic plasticity.
Neuron. 2008 Sep 25;59(6):882-901. doi: 10.1016/j.neuron.2008.09.005.
10
The effect of residual Ca2+ on the stochastic gating of Ca2+-regulated Ca2+ channel models.
J Theor Biol. 2005 Jul 7;235(1):121-50. doi: 10.1016/j.jtbi.2004.12.024.

引用本文的文献

1
Close agreement between deterministic versus stochastic modeling of first-passage time to vesicle fusion.
Biophys J. 2022 Dec 6;121(23):4569-4584. doi: 10.1016/j.bpj.2022.10.033. Epub 2022 Oct 29.
2
Influence of T-Bar on Calcium Concentration Impacting Release Probability.
Front Comput Neurosci. 2022 May 2;16:855746. doi: 10.3389/fncom.2022.855746. eCollection 2022.
4
6
Variable priming of a docked synaptic vesicle.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1098-107. doi: 10.1073/pnas.1523054113. Epub 2016 Feb 8.
8
The structure and function of 'active zone material' at synapses.
Philos Trans R Soc Lond B Biol Sci. 2015 Jul 5;370(1672). doi: 10.1098/rstb.2014.0189.
10
Microdomain calcium fluctuations as a colored noise process.
Front Genet. 2014 Nov 3;5:376. doi: 10.3389/fgene.2014.00376. eCollection 2014.

本文引用的文献

1
Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions.
Neuron. 2004 Mar 25;41(6):929-42. doi: 10.1016/s0896-6273(04)00117-5.
2
Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone.
J Neurosci. 2004 Mar 24;24(12):2877-85. doi: 10.1523/JNEUROSCI.1660-03.2004.
3
4
Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis.
Science. 2004 Apr 9;304(5668):289-92. doi: 10.1126/science.1095801. Epub 2004 Mar 11.
5
Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.
Eur J Neurosci. 2003 Oct;18(8):2403-7. doi: 10.1046/j.1460-9568.2003.02948.x.
6
Mathematical model of the spatio-temporal dynamics of second messengers in visual transduction.
Biophys J. 2003 Sep;85(3):1358-76. doi: 10.1016/S0006-3495(03)74570-6.
7
Calcium regulates exocytosis at the level of single vesicles.
Nat Neurosci. 2003 Aug;6(8):846-53. doi: 10.1038/nn1087.
8
Synaptotagmin: a Ca(2+) sensor that triggers exocytosis?
Nat Rev Mol Cell Biol. 2002 Jul;3(7):498-508. doi: 10.1038/nrm855.
9
Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography.
J Neurosci. 2002 Mar 1;22(5):1648-67. doi: 10.1523/JNEUROSCI.22-05-01648.2002.
10
Calcium diffusion coefficient in rod photoreceptor outer segments.
Biophys J. 2002 Feb;82(2):728-39. doi: 10.1016/S0006-3495(02)75435-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验