Department of Mathematical Sciences, University of Copenhagen, København, Denmark.
Department of Neuroscience, University of Copenhagen, København, Denmark.
Elife. 2020 Feb 20;9:e51032. doi: 10.7554/eLife.51032.
Chemical synaptic transmission relies on the Ca-induced fusion of transmitter-laden vesicles whose coupling distance to Ca channels determines synaptic release probability and short-term plasticity, the facilitation or depression of repetitive responses. Here, using electron- and super-resolution microscopy at the neuromuscular junction we quantitatively map vesicle:Ca channel coupling distances. These are very heterogeneous, resulting in a broad spectrum of vesicular release probabilities within synapses. Stochastic simulations of transmitter release from vesicles placed according to this distribution revealed strong constraints on short-term plasticity; particularly facilitation was difficult to achieve. We show that postulated facilitation mechanisms operating via activity-dependent changes of vesicular release probability (e.g. by a facilitation fusion sensor) generate too little facilitation and too much variance. In contrast, Ca-dependent mechanisms rapidly increasing the number of releasable vesicles reliably reproduce short-term plasticity and variance of synaptic responses. We propose activity-dependent inhibition of vesicle un-priming or release site activation as novel facilitation mechanisms.
化学突触传递依赖于携载递质的囊泡与 Ca 通道的融合,而囊泡与 Ca 通道的偶联距离决定了突触释放概率和短期可塑性,即重复反应的易化或抑制。在这里,我们使用电子显微镜和超分辨率显微镜在神经肌肉接头处定量绘制了囊泡与 Ca 通道的偶联距离。这些距离差异很大,导致突触内囊泡释放概率呈现出广泛的分布。根据这一分布情况,对根据该分布情况定位的囊泡进行的递质释放的随机模拟表明,短期可塑性受到很强的限制;特别是易化作用很难实现。我们表明,通过活动依赖性改变囊泡释放概率(例如通过易化融合传感器)来实现的假定的易化机制产生的易化作用太小,变异性太大。相比之下,Ca 依赖性机制可快速增加可释放囊泡的数量,从而可靠地再现突触反应的短期可塑性和变异性。我们提出了活动依赖性抑制囊泡去极化或释放位点激活作为新的易化机制。