Suppr超能文献

CA1中间神经元的空间选择性和θ相位进动

Spatial selectivity and theta phase precession in CA1 interneurons.

作者信息

Ego-Stengel Valérie, Wilson Matthew A

机构信息

The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Hippocampus. 2007;17(2):161-74. doi: 10.1002/hipo.20253.

Abstract

Traditionally, most of the information processing of neural networks is thought to be carried out by excitatory cells. Likewise, recent evidence for temporal coding comes from the study of the detailed firing patterns of excitatory neurons. In the CA1 region of the rat hippocampus, pyramidal cells discharge selectively when the animal is in specific locations in its environment, and exhibit a precise relationship with the ongoing rhythmic activity of the network (phase precession). We demonstrate that during a spatial exploratory behavior on a linear track, inhibitory interneurons also show spatial selectivity and phase precession dynamics. We found that the firing rate of interneurons is modulated reliably up and down around an ongoing baseline activity level for specific locations in the environment, producing robust place-specific increases or decreases in discharge. On some sections of the track, the range of theta phases shifts progressively to earlier parts of the theta cycle as the rat advances, so that a negative correlation between phase and position could be demonstrated. Unlike pyramidal cells, phase and rate were not strongly correlated. We discuss the influence of the intrinsic firing properties of interneurons on a model of phase precession, as well as the influence of the detailed shape of the inhibitory oscillation. These results indicate that spatial selectivity and phase precession in CA1 are not properties restricted to pyramidal cells. Rather, they may be a more general expression of a common interaction between the different inputs impinging on both excitatory and inhibitory cells in CA1 and the intrinsic characteristics of those cells. Furthermore, they suggest that the role of interneurons may extend beyond a global damping of the network by participating in a finely-tuned local processing with the pyramidal cells.

摘要

传统上,人们认为神经网络的大部分信息处理是由兴奋性细胞完成的。同样,近期关于时间编码的证据来自对兴奋性神经元详细放电模式的研究。在大鼠海马体的CA1区域,当动物处于其环境中的特定位置时,锥体细胞会选择性地放电,并与网络正在进行的节律性活动呈现精确的关系(相位进动)。我们证明,在直线轨道上进行空间探索行为期间,抑制性中间神经元也表现出空间选择性和相位进动动态。我们发现,对于环境中的特定位置,中间神经元的放电频率会在持续的基线活动水平上下可靠地调制,从而产生明显的位置特异性放电增加或减少。在轨道的某些部分,随着大鼠前进,θ相位的范围逐渐向θ周期的较早部分移动,因此可以证明相位与位置之间存在负相关。与锥体细胞不同,相位和频率之间没有强相关性。我们讨论了中间神经元的固有放电特性对相位进动模型的影响,以及抑制性振荡详细形状的影响。这些结果表明,CA1区域的空间选择性和相位进动并非锥体细胞所特有的特性。相反,它们可能是作用于CA1区域兴奋性和抑制性细胞的不同输入与这些细胞固有特征之间共同相互作用的更普遍表现。此外,这表明中间神经元的作用可能不仅限于通过与锥体细胞参与精细调整的局部处理来对网络进行整体抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验