Suppr超能文献

过氧化氢酶是依赖 NAD(P)H 的亚碲酸盐还原酶。

Catalases are NAD(P)H-dependent tellurite reductases.

机构信息

Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

出版信息

PLoS One. 2006 Dec 20;1(1):e70. doi: 10.1371/journal.pone.0000070.

Abstract

Reactive oxygen species damage intracellular targets and are implicated in cancer, genetic disease, mutagenesis, and aging. Catalases are among the key enzymatic defenses against one of the most physiologically abundant reactive oxygen species, hydrogen peroxide. The well-studied, heme-dependent catalases accelerate the rate of the dismutation of peroxide to molecular oxygen and water with near kinetic perfection. Many catalases also bind the cofactors NADPH and NADH tenaciously, but, surprisingly, NAD(P)H is not required for their dismutase activity. Although NAD(P)H protects bovine catalase against oxidative damage by its peroxide substrate, the catalytic role of the nicotinamide cofactor in the function of this enzyme has remained a biochemical mystery to date. Anions formed by heavy metal oxides are among the most highly reactive, natural oxidizing agents. Here, we show that a natural isolate of Staphylococcus epidermidis resistant to tellurite detoxifies this anion thanks to a novel activity of its catalase, and that a subset of both bacterial and mammalian catalases carry out the NAD(P)H-dependent reduction of soluble tellurite ion (TeO(3)(2-)) to the less toxic, insoluble metal, tellurium (Te(o)), in vitro. An Escherichia coli mutant defective in the KatG catalase/peroxidase is sensitive to tellurite, and expression of the S. epidermidis catalase gene in a heterologous E. coli host confers increased resistance to tellurite as well as to hydrogen peroxide in vivo, arguing that S. epidermidis catalase provides a physiological line of defense against both of these strong oxidizing agents. Kinetic studies reveal that bovine catalase reduces tellurite with a low Michaelis-Menten constant, a result suggesting that tellurite is among the natural substrates of this enzyme. The reduction of tellurite by bovine catalase occurs at the expense of producing the highly reactive superoxide radical.

摘要

活性氧会破坏细胞内的靶标,并与癌症、遗传疾病、诱变和衰老有关。过氧化氢酶是针对生理上最丰富的活性氧之一——过氧化氢的关键酶防御之一。研究充分的血红素依赖性过氧化氢酶以近乎动力学的完美方式加速过氧化物歧化为氧气和水的速率。许多过氧化氢酶还紧紧地结合辅因子 NADPH 和 NADH,但令人惊讶的是,NAD(P)H 不是其歧化酶活性所必需的。尽管 NAD(P)H 通过其过氧化物底物保护牛过氧化氢酶免受氧化损伤,但迄今为止,烟酰胺辅因子在该酶功能中的催化作用仍然是生化之谜。重金属氧化物形成的阴离子是最具反应性的天然氧化剂之一。在这里,我们表明,表皮葡萄球菌的一种天然分离株对亚碲酸盐具有抗性,这要归功于其过氧化氢酶的一种新活性,并且细菌和哺乳动物过氧化氢酶的一部分在体外进行 NAD(P)H 依赖性还原可溶性亚碲酸盐离子 (TeO(3)(2-)) 为毒性较小的不溶性金属碲 (Te(o))。大肠杆菌中一种缺陷型 KatG 过氧化氢酶/过氧化物酶的突变体对亚碲酸盐敏感,表皮葡萄球菌过氧化氢酶基因在异源大肠杆菌宿主中的表达赋予了对亚碲酸盐以及体内过氧化氢的更高抗性,这表明表皮葡萄球菌过氧化氢酶为这两种强氧化剂提供了生理防御。动力学研究表明,牛过氧化氢酶以低米氏常数还原亚碲酸盐,这一结果表明亚碲酸盐是该酶的天然底物之一。牛过氧化氢酶还原亚碲酸盐会以产生高反应性超氧自由基为代价。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2226/1762332/6a172c761fa8/pone.0000070.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验