Suppr超能文献

系统生物学策略揭示了可能导致肌肉中他汀类药物潜在毒性变化的生物学途径和血浆生物标志物候选物。

A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

机构信息

Research Unit, University Hospital of Tampere, Tampere, Finland.

出版信息

PLoS One. 2006 Dec 20;1(1):e97. doi: 10.1371/journal.pone.0000097.

Abstract

BACKGROUND

Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects.

METHODOLOGY

We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg), atorvastatin (40 mg), or placebo.

PRINCIPAL FINDINGS

High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05), while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1) in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein.

CONCLUSIONS

High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

摘要

背景

大剂量他汀类药物降脂会增加他汀类药物引起的肌病的风险。然而,导致肌肉损伤的细胞机制尚不清楚,需要敏感的生物标志物来识别有发生他汀类药物引起的严重副作用风险的患者。

方法

我们对来自早期随机试验的肌肉标本进行了全基因组表达谱的生物信息学分析,对血浆样本进行了 UPLC/MS 基础脂质组学分析,这些患者分别接受高剂量辛伐他汀(80mg)、阿托伐他汀(40mg)或安慰剂治疗。

主要发现

高剂量辛伐他汀治疗导致 111 个差异表达基因(变化倍数为 1.5 倍,p 值<0.05),而安慰剂和阿托伐他汀组的基因表达分别只改变了一个和五个基因。基因集富集分析鉴定了肌肉中受高剂量辛伐他汀影响的几个途径(23 个基因列表,假发现率 q 值<0.1),包括花生四烯酸合成和磷脂酶 C 途径。通过脂质组学分析,我们发现尽管血浆 LDL-胆固醇发生了类似的他汀类药物诱导变化,但在血浆脂质谱中仍存在以前未表征的药物特异性变化。我们还发现,辛伐他汀治疗后血浆脂质组学变化与花生四烯酸 5-脂氧合酶激活蛋白在肌肉中的表达相关。

结论

高剂量辛伐他汀会影响骨骼肌中的多个代谢和信号通路,包括促炎途径。因此,我们的结果表明,临床上使用的高他汀剂量可能会导致非肝脏组织中出现意想不到的代谢效应。脂质组学图谱可作为他汀类药物引起的肌肉代谢改变的高度敏感生物标志物,从而使我们能够识别出需要用较低剂量治疗以防止可能毒性的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5214/1762369/57f961d56807/pone.0000097.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验