Bathellier Brice, Van De Ville Dimitri, Blu Thierry, Unser Michael, Carleton Alan
Flavour Perception Group, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, (EPFL), CH-1015, Switzerland.
Neuroimage. 2007 Feb 1;34(3):1020-35. doi: 10.1016/j.neuroimage.2006.10.038. Epub 2006 Dec 19.
Optical imaging techniques offer powerful solutions to capture brain networks processing in animals, especially when activity is distributed in functionally distinct spatial domains. Despite the progress in imaging techniques, the standard analysis procedures and statistical assessments for this type of data are still limited. In this paper, we perform two in vivo non-invasive optical recording techniques in the mouse olfactory bulb, using a genetically expressed activity reporter fluorescent protein (synaptopHfluorin) and intrinsic signals of the brain. For both imaging techniques, we show that the odour-triggered signals can be accurately parameterized using linear models. Fitting the models allows us to extract odour specific signals with a reduced level of noise compared to standard methods. In addition, the models serve to evaluate statistical significance, using a wavelet-based framework that exploits spatial correlation at different scales. We propose an extension of this framework to extract activation patterns at specific wavelet scales. This method is especially interesting to detect the odour inputs that segregate on the olfactory bulb in small spherical structures called glomeruli. Interestingly, with proper selection of wavelet scales, we can isolate significantly activated glomeruli and thus determine the odour map in an automated manner. Comparison against manual detection of glomeruli shows the high accuracy of the proposed method. Therefore, beyond the advantageous alternative to the existing treatments of optical imaging signals in general, our framework propose an interesting procedure to dissect brain activation patterns on multiple scales with statistical control.
光学成像技术为捕捉动物大脑网络处理过程提供了强大的解决方案,尤其是当活动分布在功能不同的空间区域时。尽管成像技术取得了进展,但针对这类数据的标准分析程序和统计评估仍然有限。在本文中,我们在小鼠嗅球中进行了两种体内非侵入性光学记录技术,使用了一种基因表达的活性报告荧光蛋白(突触pH荧光蛋白)和大脑的内在信号。对于这两种成像技术,我们表明气味触发的信号可以使用线性模型进行准确参数化。与标准方法相比,拟合模型使我们能够提取噪声水平降低的气味特定信号。此外,这些模型用于评估统计显著性,使用基于小波的框架,该框架利用不同尺度的空间相关性。我们提出了这个框架的扩展,以提取特定小波尺度下的激活模式。这种方法对于检测在称为肾小球的小球形结构中在嗅球上分离的气味输入特别有意义。有趣的是,通过适当选择小波尺度,我们可以分离出显著激活的肾小球,从而以自动化方式确定气味图谱。与手动检测肾小球的比较表明了所提出方法的高精度。因此,除了一般而言是现有光学成像信号处理方法的有利替代方案之外,我们的框架提出了一种有趣的程序,可在统计控制下剖析多个尺度上的大脑激活模式。