Suppr超能文献

利用光学反射率和自发荧光信号对小鼠嗅球中气味诱发的活动进行成像。

Imaging odor-evoked activities in the mouse olfactory bulb using optical reflectance and autofluorescence signals.

作者信息

Chery Romain, L'Heureux Barbara, Bendahmane Mounir, Renaud Rémi, Martin Claire, Pain Frédéric, Gurden Hirac

机构信息

Laboratoire d’Imagerie et de Modélisation en Neurobiologie et Cancérologie, UMR8165 Université Paris Sud 11, Paris Diderot 7 – CNRS.

出版信息

J Vis Exp. 2011 Oct 31(56):e3336. doi: 10.3791/3336.

Abstract

In the brain, sensory stimulation activates distributed populations of neurons among functional modules which participate to the coding of the stimulus. Functional optical imaging techniques are advantageous to visualize the activation of these modules in sensory cortices with high spatial resolution. In this context, endogenous optical signals that arise from molecular mechanisms linked to neuroenergetics are valuable sources of contrast to record spatial maps of sensory stimuli over wide fields in the rodent brain. Here, we present two techniques based on changes of endogenous optical properties of the brain tissue during activation. First the intrinsic optical signals (IOS) are produced by a local alteration in red light reflectance due to: (i) absorption by changes in blood oxygenation level and blood volume (ii) photon scattering. The use of in vivo IOS to record spatial maps started in the mid 1980's with the observation of optical maps of whisker barrels in the rat and the orientation columns in the cat visual cortex(1). IOS imaging of the surface of the rodent main olfactory bulb (OB) in response to odorants was later demonstrated by Larry Katz's group(2). The second approach relies on flavoprotein autofluorescence signals (FAS) due to changes in the redox state of these mitochondrial metabolic intermediates. More precisely, the technique is based on the green fluorescence due to oxidized state of flavoproteins when the tissue is excited with blue light. Although such signals were probably among the first fluorescent molecules recorded for the study of brain activity by the pioneer studies of Britton Chances and colleagues(3), it was not until recently that they have been used for mapping of brain activation in vivo. FAS imaging was first applied to the somatosensory cortex in rodents in response to hindpaw stimulation by Katsuei Shibuki's group(4). The olfactory system is of central importance for the survival of the vast majority of living species because it allows efficient detection and identification of chemical substances in the environment (food, predators). The OB is the first relay of olfactory information processing in the brain. It receives afferent projections from the olfactory primary sensory neurons that detect volatile odorant molecules. Each sensory neuron expresses only one type of odorant receptor and neurons carrying the same type of receptor send their nerve processes to the same well-defined microregions of ˜100μm(3) constituted of discrete neuropil, the olfactory glomerulus (Fig. 1). In the last decade, IOS imaging has fostered the functional exploration of the OB(5, 6, 7) which has become one of the most studied sensory structures. The mapping of OB activity with FAS imaging has not been performed yet. Here, we show the successive steps of an efficient protocol for IOS and FAS imaging to map odor-evoked activities in the mouse OB.

摘要

在大脑中,感觉刺激激活功能模块间分散的神经元群体,这些神经元群体参与刺激的编码。功能光学成像技术有利于以高空间分辨率可视化感觉皮层中这些模块的激活情况。在这种背景下,源自与神经能量学相关分子机制的内源性光信号是宝贵的对比源,可用于记录啮齿动物大脑广泛区域内感觉刺激的空间图谱。在此,我们介绍两种基于激活过程中脑组织内源性光学特性变化的技术。首先,内在光学信号(IOS)是由红光反射率的局部改变产生的,这是由于:(i)血液氧合水平和血容量变化引起的吸收;(ii)光子散射。体内IOS用于记录空间图谱始于20世纪80年代中期,当时观察到大鼠触须桶的光学图谱以及猫视觉皮层中的方位柱(1)。后来,拉里·卡茨的团队证明了对啮齿动物主嗅球(OB)表面进行IOS成像以响应气味剂(2)。第二种方法依赖于黄素蛋白自发荧光信号(FAS),这是由于这些线粒体代谢中间体氧化还原状态的变化。更确切地说,该技术基于当组织用蓝光激发时黄素蛋白氧化态产生的绿色荧光。尽管在布里顿·钱斯及其同事的开创性研究中(3),这类信号可能是最早记录用于研究大脑活动的荧光分子之一,但直到最近它们才被用于体内大脑激活图谱的绘制。FAS成像首先由柴木胜江的团队应用于啮齿动物躯体感觉皮层以响应后爪刺激(4)。嗅觉系统对绝大多数生物的生存至关重要,因为它能有效地检测和识别环境中的化学物质(食物、捕食者)。OB是大脑中嗅觉信息处理的第一站。它接收来自检测挥发性气味分子的嗅觉初级感觉神经元的传入投射。每个感觉神经元仅表达一种类型的气味受体,携带相同类型受体的神经元将其神经突起发送到由离散神经毡构成的约100μm(3)的相同明确界定的微区,即嗅觉小球(图1)。在过去十年中,IOS成像促进了对OB的功能探索(5, 6, 7),OB已成为研究最多的感觉结构之一。尚未进行用FAS成像绘制OB活动图谱的研究。在此,我们展示了用于IOS和FAS成像以绘制小鼠OB中气味诱发活动的有效方案的连续步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验