Neuroinformatics & Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany.
Max-Planck Institute for Biophysics, Frankfurt am Main, Germany.
Neuroimage. 2014 Sep;98:279-88. doi: 10.1016/j.neuroimage.2014.04.041. Epub 2014 Apr 24.
Segmentation of functional parts in image series of functional activity is a common problem in neuroscience. Here we apply regularized non-negative matrix factorization (rNMF) to extract glomeruli in intrinsic optical signal (IOS) images of the olfactory bulb. Regularization allows us to incorporate prior knowledge about the spatio-temporal characteristics of glomerular signals. We demonstrate how to identify suitable regularization parameters on a surrogate dataset. With appropriate regularization segmentation by rNMF is more resilient to noise and requires fewer observations than conventional spatial independent component analysis (sICA). We validate our approach in experimental data using anatomical outlines of glomeruli obtained by 2-photon imaging of resting synapto-pHluorin fluorescence. Taken together, we show that rNMF provides a straightforward method for problem tailored source separation that enables reliable automatic segmentation of functional neural images, with particular benefit in situations with low signal-to-noise ratio as in IOS imaging.
功能活动的图像序列中功能部分的分割是神经科学中的一个常见问题。在这里,我们应用正则化非负矩阵分解(rNMF)来提取嗅球内光信号(IOS)图像中的肾小球。正则化允许我们合并关于肾小球信号的时空特征的先验知识。我们展示了如何在替代数据集上识别合适的正则化参数。通过适当的正则化,rNMF 的分割对噪声更具弹性,并且比传统的空间独立成分分析(sICA)需要更少的观察值。我们使用通过 2 光子成像静止突触 pHluorin 荧光获得的肾小球的解剖轮廓,在实验数据中验证了我们的方法。总之,我们表明 rNMF 为针对问题的源分离提供了一种简单的方法,能够可靠地自动分割功能神经图像,在 IOS 成像等信噪比低的情况下特别有益。