Suppr超能文献

单体通过两阶段对接锁定机制添加到预先形成的β-淀粉样肽结构化寡聚体中。

Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism.

作者信息

Nguyen Phuong H, Li Mai Suan, Stock Gerhard, Straub John E, Thirumalai D

机构信息

*Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Strasse 11, D-60439 Frankfurt, Germany.

出版信息

Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):111-6. doi: 10.1073/pnas.0607440104. Epub 2006 Dec 26.

Abstract

Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Abeta(16-22))(n) by adding a monomer to a preformed (Abeta(16-22))(n-1) (n = 4-6) oligomer in which the peptides are arranged in an antiparallel beta-sheet conformation. All atom molecular dynamics simulations in water and multiple long trajectories, for a cumulative time of 6.9 mus, show that the oligomer grows by a two-stage dock-lock mechanism. The largest conformational change in the added disordered monomer occurs during the rapid ( approximately 50 ns) first dock stage in which the beta-strand content of the monomer increases substantially from a low initial value. In the second slow-lock phase, the monomer rearranges to form in register antiparallel structures. Surprisingly, the mobile structured oligomers undergo large conformational changes in order to accommodate the added monomer. The time needed to incorporate the monomer into the fluid-like oligomer grows even when n = 6, which suggests that the critical nucleus size must exceed six. Stable antiparallel structure formation exceeds hundreds of nanoseconds even though frequent interpeptide collisions occur at elevated monomer concentrations used in the simulations. The dock-lock mechanism should be a generic mechanism for growth of oligomers of amyloidogenic peptides.

摘要

非纤维状可溶性寡聚体是单体向淀粉样纤维转变过程中的中间体,可能是阿尔茨海默病中的毒性物质。为了监测指导淀粉样生成肽组装的早期事件,我们通过将一个单体添加到预先形成的(Abeta(16 - 22))(n - 1)(n = 4 - 6)寡聚体中来探测(Abeta(16 - 22))(n)的形成动力学,其中肽以反平行β-折叠构象排列。在水中进行的全原子分子动力学模拟以及多条长时间轨迹,累计时间为6.9微秒,结果表明寡聚体通过两阶段对接-锁定机制生长。添加的无序单体中最大的构象变化发生在快速(约50纳秒)的第一对接阶段,在此阶段单体的β-链含量从低初始值大幅增加。在第二缓慢锁定阶段,单体重新排列形成对齐的反平行结构。令人惊讶的是,可移动的结构化寡聚体会发生大的构象变化以容纳添加的单体。即使n = 6时,将单体纳入类流体寡聚体所需的时间也会增加,这表明临界核尺寸必须超过六个。尽管在模拟中使用的较高单体浓度下肽间频繁碰撞,但稳定的反平行结构形成仍超过数百纳秒。对接-锁定机制应该是淀粉样生成肽寡聚体生长的一种通用机制。

相似文献

1
Monomer adds to preformed structured oligomers of Abeta-peptides by a two-stage dock-lock mechanism.
Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):111-6. doi: 10.1073/pnas.0607440104. Epub 2006 Dec 26.
2
Mechanism of fiber assembly: treatment of Aβ peptide aggregation with a coarse-grained united-residue force field.
J Mol Biol. 2010 Dec 3;404(3):537-52. doi: 10.1016/j.jmb.2010.09.057. Epub 2010 Oct 1.
3
Role of water in protein aggregation and amyloid polymorphism.
Acc Chem Res. 2012 Jan 17;45(1):83-92. doi: 10.1021/ar2000869. Epub 2011 Jul 15.
4
Principles governing oligomer formation in amyloidogenic peptides.
Curr Opin Struct Biol. 2010 Apr;20(2):187-95. doi: 10.1016/j.sbi.2009.12.017. Epub 2010 Jan 26.
5
Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
Acc Chem Res. 2014 Feb 18;47(2):603-11. doi: 10.1021/ar4002075. Epub 2013 Dec 24.
6
Aqueous urea solution destabilizes Abeta(16-22) oligomers.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14760-5. doi: 10.1073/pnas.0404570101. Epub 2004 Oct 1.
7
Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach.
J Mol Biol. 2013 Sep 23;425(18):3338-59. doi: 10.1016/j.jmb.2013.06.021. Epub 2013 Jun 25.
8
Dissecting the assembly of Abeta16-22 amyloid peptides into antiparallel beta sheets.
Structure. 2003 Mar;11(3):295-307. doi: 10.1016/s0969-2126(03)00031-5.
9
The conformational stability of nonfibrillar amyloid-β peptide oligomers critically depends on the C-terminal peptide length.
ACS Chem Neurosci. 2014 Mar 19;5(3):161-7. doi: 10.1021/cn400208r. Epub 2014 Feb 11.

引用本文的文献

1
How does protein aggregate structure affect mechanisms of disaggregation?
Biochem Soc Trans. 2025 Aug 29;53(4):881-895. doi: 10.1042/BST20253077.
2
Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2401307122. doi: 10.1073/pnas.2401307122. Epub 2025 Jan 24.
4
Delineating the Role of GxxxG Motif in Amyloidogenesis: A New Perspective in Targeting Amyloid-Beta Mediated AD Pathogenesis.
ACS Bio Med Chem Au. 2023 Oct 31;4(1):4-19. doi: 10.1021/acsbiomedchemau.3c00055. eCollection 2024 Feb 21.
5
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease.
Annu Rev Biophys. 2024 Jul;53(1):455-486. doi: 10.1146/annurev-biophys-062823-023436. Epub 2024 Jun 28.
6
Inhibition of amyloid-β(16-22) aggregation by polyphenols using replica permutation with solute tempering molecular dynamics simulation.
Biophys Physicobiol. 2023 Dec 9;20(4):e200045. doi: 10.2142/biophysico.bppb-v20.0045. eCollection 2023.
7
Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6.
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2309995120. doi: 10.1073/pnas.2309995120. Epub 2023 Nov 20.
8
Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation.
Curr Med Chem. 2024;31(20):2855-2871. doi: 10.2174/0929867330666230409145247.
9
Energy landscapes of Aβ monomers are sculpted in accordance with Ostwald's rule of stages.
Sci Adv. 2023 Mar 22;9(12):eadd6921. doi: 10.1126/sciadv.add6921.
10
Calcium inhibits penetration of Alzheimer's Aβ - monomers into the membrane.
Proteins. 2022 Dec;90(12):2124-2143. doi: 10.1002/prot.26403. Epub 2022 Aug 10.

本文引用的文献

1
Recent atomic models of amyloid fibril structure.
Curr Opin Struct Biol. 2006 Apr;16(2):260-5. doi: 10.1016/j.sbi.2006.03.007. Epub 2006 Mar 24.
2
Atomic-level description of amyloid beta-dimer formation.
J Am Chem Soc. 2006 Feb 22;128(7):2158-9. doi: 10.1021/ja0548337.
4
Molecular dynamics simulations of Alzheimer's beta-amyloid protofilaments.
J Mol Biol. 2005 Nov 4;353(4):804-21. doi: 10.1016/j.jmb.2005.08.066. Epub 2005 Sep 15.
6
Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations.
J Mol Biol. 2005 Jul 22;350(4):817-29. doi: 10.1016/j.jmb.2005.05.012.
7
Structure of the cross-beta spine of amyloid-like fibrils.
Nature. 2005 Jun 9;435(7043):773-8. doi: 10.1038/nature03680.
8
RNA and protein folding: common themes and variations.
Biochemistry. 2005 Apr 5;44(13):4957-70. doi: 10.1021/bi047314+.
9
Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils.
Science. 2005 Jan 14;307(5707):262-5. doi: 10.1126/science.1105850.
10
Probing the initial stage of aggregation of the Abeta(10-35)-protein: assessing the propensity for peptide dimerization.
J Mol Biol. 2005 Feb 4;345(5):1141-56. doi: 10.1016/j.jmb.2004.11.022. Epub 2004 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验