Saito Takeshi, Hirai Reiko, Loo Yueh-Ming, Owen David, Johnson Cynthia L, Sinha Sangita C, Akira Shizuo, Fujita Takashi, Gale Michael
Department of Microbiology, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75235-9048, USA.
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):582-7. doi: 10.1073/pnas.0606699104. Epub 2006 Dec 26.
RIG-I is an RNA helicase containing caspase activation and recruitment domains (CARDs). RNA binding and signaling by RIG-I are implicated in pathogen recognition and triggering of IFN-alpha/beta immune defenses that impact cell permissiveness for hepatitis C virus (HCV). Here we evaluated the processes that control RIG-I signaling. RNA binding studies and analysis of cells lacking RIG-I, or the related MDA5 protein, demonstrated that RIG-I, but not MDA5, efficiently binds to secondary structured HCV RNA to confer induction of IFN-beta expression. We also found that LGP2, a helicase related to RIG-I and MDA5 but lacking CARDs and functioning as a negative regulator of host defense, binds HCV RNA. In resting cells, RIG-I is maintained as a monomer in an autoinhibited state, but during virus infection and RNA binding it undergoes a conformation shift that promotes self-association and CARD interactions with the IPS-1 adaptor protein to signal IFN regulatory factor 3- and NF-kappaB-responsive genes. This reaction is governed by an internal repressor domain (RD) that controls RIG-I multimerization and IPS-1 interaction. Deletion of the RIG-I RD resulted in constitutive signaling to the IFN-beta promoter, whereas RD expression alone prevented signaling and increased cellular permissiveness to HCV. We identified an analogous RD within LGP2 that interacts in trans with RIG-I to ablate self-association and signaling. Thus, RIG-I is a cytoplasmic sensor of HCV and is governed by RD interactions that are shared with LGP2 as an on/off switch controlling innate defenses. Modulation of RIG-I/LGP2 interaction dynamics may have therapeutic implications for immune regulation.
视黄酸诱导基因I(RIG-I)是一种含有半胱天冬酶激活和募集结构域(CARD)的RNA解旋酶。RIG-I的RNA结合和信号传导与病原体识别以及I型干扰素(IFN-α/β)免疫防御的触发有关,而这种免疫防御会影响丙型肝炎病毒(HCV)的细胞易感性。在此,我们评估了控制RIG-I信号传导的过程。RNA结合研究以及对缺乏RIG-I或相关黑色素瘤分化相关基因5(MDA5)蛋白的细胞的分析表明,RIG-I而非MDA5能有效结合二级结构的HCV RNA,从而诱导IFN-β表达。我们还发现,LGP2是一种与RIG-I和MDA5相关的解旋酶,但缺乏CARD,作为宿主防御的负调节因子,它能结合HCV RNA。在静息细胞中,RIG-I以单体形式维持在自抑制状态,但在病毒感染和RNA结合过程中,它会发生构象转变,促进自身缔合并与接头蛋白IPS-1的CARD相互作用,从而向IFN调节因子3和核因子κB反应基因发出信号。该反应由一个内部抑制结构域(RD)控制,该结构域控制RIG-I的多聚化和与IPS-1的相互作用。删除RIG-I的RD会导致向IFN-β启动子的组成型信号传导,而单独表达RD则会阻止信号传导并增加细胞对HCV的易感性。我们在LGP2中鉴定出一个类似的RD,它与RIG-I发生反式相互作用,以消除自身缔合和信号传导。因此,RIG-I是HCV的细胞质传感器,并受与LGP2共享的RD相互作用的控制,作为控制先天防御的开关。调节RIG-I/LGP2相互作用动力学可能对免疫调节具有治疗意义。