Suppr超能文献

The emergence of architectonic field structure and areal borders in developing monkey sensorimotor cortex.

作者信息

Huntley G W, Jones E G

机构信息

Department of Anatomy and Neurobiology, University of California, Irvine 92717.

出版信息

Neuroscience. 1991;44(2):287-310. doi: 10.1016/0306-4522(91)90055-s.

Abstract

Adult monkey sensorimotor cortex consists of several structurally and functionally distinct areas. The developmental sequence through which the characteristic architectonic features and the borders of these areas become resolved was examined in a series of fetal, postnatal and adult monkeys by using Nissl staining, cytochrome oxidase and acetylcholinesterase histochemistry, and immunocytochemistry for GABA and the neuropeptides somatostatin, neuropeptide Y, substance P and cholecystokinin. At the youngest fetal age examined (E110), the pre- and postcentral gyri possess six clearly delineated cellular layers; populations of GABA- and neuropeptide-immunoreactive cells can be identified, but their somatic sensory cortex at E110 lacks areal cytoarchitectonic parcellation. Despite the apparent homogeneity in the cytoarchitecture of the somatic sensory cortex, incipient areal borders are revealed by staining for cytochrome oxidase and acetylcholinesterase activity, and by staining immunocytochemically for several neuropeptides. The motor cortex at E110 differs from that in adults by the presence of a prominent layer IV; a clear cytoarchitectonic border between areas 3a and 4 is detectable at E110, which is also revealed by chemoarchitectonic markers. With increasing age, the characteristic architectonic features gradually emerge and areal cytoarchitectonic borders appear, becoming adult-like by early postnatal ages. The gradual changes in cytoarchitecture are paralleled by redistributions of GABA- and neuropeptide-immunoreactive cells and fiber plexuses. The data demonstrate that the progressive refinement in cytoarchitectonic features and in the distributions of neurotransmitter- and peptide-containing cells occurs primarily during the latter third of gestation. The major changes are temporally coincident with the ingrowth of afferent axonal systems, suggesting that the establishment of connectivity may be capable of modulating finer details of structural or molecular phenotype, particularly intra-areal cytoarchitectonic features and neurotransmitter or peptide expression.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验