Suppr超能文献

铜绿假单胞菌中丰富的pKLC102/PAGI-2基因组岛家族的多样性。

Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa.

作者信息

Klockgether Jens, Würdemann Dieco, Reva Oleg, Wiehlmann Lutz, Tümmler Burkhard

机构信息

Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.

出版信息

J Bacteriol. 2007 Mar;189(6):2443-59. doi: 10.1128/JB.01688-06. Epub 2006 Dec 28.

Abstract

The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNA(Lys) (pKLC102) or tRNA(Gly) (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa.

摘要

铜绿假单胞菌克隆C菌株已知的基因组岛整合到tRNA(Lys)(pKLC102)或tRNA(Gly)(PAGI - 2和PAGI - 3)基因中,并且通过独特的四核苷酸使用模式与其核心基因组不同。pKLC102以及来自铜绿假单胞菌PA14的相关岛PAPI - 1以10%和0.3%的频率从其宿主染色体上自发转移,这使得pKLC102成为已知的移动性最强的基因组岛,每个细胞有30个游离的环状pKLC102分子拷贝数。在来自不同栖息地和地理来源的71株不相关铜绿假单胞菌菌株中研究了pKLC102/PAGI - 2型岛的发生率。分别在50株和31株菌株中鉴定出了pKLC102样岛和PAGI - 2样岛,并且通过在pKLC102和PAGI - 2宏阵列上的杂交区分出了15种和10种亚型。PAGI - 2型岛的多样性主要由一大块菌株特异性基因引起,而pKLC102型岛的多样性主要由基因盒的亚型特异性组合产生。在来自囊性纤维化患者的连续铜绿假单胞菌分离株中可以证明PAGI - 2的染色体丢失。在大多数来自污染环境的测试嗜金属贪铜菌和坎皮纳嗜铜菌分离株中都存在PAGI - 2,这表明PAGI - 2跨越栖息地和物种屏障传播。pKLC102/PAGI - 2家族在众多β - 变形菌和γ - 变形菌中普遍存在,并且以cDNA链的高度不对称性为特征。这个进化上古老的基因组岛家族在分类群内部和之间的水平传播过程中保留了其寡核苷酸特征。

相似文献

1
Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa.
J Bacteriol. 2007 Mar;189(6):2443-59. doi: 10.1128/JB.01688-06. Epub 2006 Dec 28.
2
Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102.
Microbiology (Reading). 2008 Jun;154(Pt 6):1599-1604. doi: 10.1099/mic.0.2007/014340-0.
3
Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands.
PLoS One. 2012;7(5):e37459. doi: 10.1371/journal.pone.0037459. Epub 2012 May 25.
4
In silico comparison of pKLC102-like genomic islands of Pseudomonas aeruginosa.
FEMS Microbiol Lett. 2007 Oct;275(2):244-9. doi: 10.1111/j.1574-6968.2007.00891.x. Epub 2007 Aug 22.
5
Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C.
J Bacteriol. 2004 Jan;186(2):518-34. doi: 10.1128/JB.186.2.518-534.2004.
6
Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa.
J Bacteriol. 2001 Feb;183(3):843-53. doi: 10.1128/JB.183.3.843-853.2001.
8
Pseudomonas aeruginosa Genomic Structure and Diversity.
Front Microbiol. 2011 Jul 13;2:150. doi: 10.3389/fmicb.2011.00150. eCollection 2011.
9
Genomic islands of Pseudomonas aeruginosa.
FEMS Microbiol Lett. 2009 Jan;290(1):70-8. doi: 10.1111/j.1574-6968.2008.01406.x. Epub 2008 Nov 18.

引用本文的文献

1
Carbapenem-Resistant Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes.
Antibiotics (Basel). 2025 Mar 31;14(4):353. doi: 10.3390/antibiotics14040353.
3
Rapid dissemination of host metabolism-manipulating genes via integrative and conjugative elements.
Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2309263121. doi: 10.1073/pnas.2309263121. Epub 2024 Mar 8.
4
Diversity and evolution of an abundant ICE family of integrative and conjugative elements in .
mSphere. 2023 Dec 20;8(6):e0051723. doi: 10.1128/msphere.00517-23. Epub 2023 Oct 30.
5
A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of TBCF10839.
Front Cell Infect Microbiol. 2023 Jul 27;13:1234420. doi: 10.3389/fcimb.2023.1234420. eCollection 2023.
6
Structural genome variants of clone C and PA14 strains.
Front Microbiol. 2023 Mar 13;14:1095928. doi: 10.3389/fmicb.2023.1095928. eCollection 2023.
8
Direct RNA Nanopore Sequencing of Pseudomonas aeruginosa Clone C Transcriptomes.
J Bacteriol. 2022 Jan 18;204(1):e0041821. doi: 10.1128/JB.00418-21. Epub 2021 Nov 15.
9
Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa.
Nucleic Acids Res. 2021 Feb 26;49(4):2114-2125. doi: 10.1093/nar/gkab006.
10
From genotype to phenotype: adaptations of to the cystic fibrosis environment.
Microb Genom. 2021 Mar;7(3). doi: 10.1099/mgen.0.000513. Epub 2021 Feb 2.

本文引用的文献

1
DISTANCE METHODS: A REPLY TO FARRIS.
Cladistics. 1986 Mar;2(2):130-143. doi: 10.1111/j.1096-0031.1986.tb00448.x.
2
Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis.
Microbiology (Reading). 2006 Nov;152(Pt 11):3261-3269. doi: 10.1099/mic.0.29175-0.
3
Acquisition and evolution of the exoU locus in Pseudomonas aeruginosa.
J Bacteriol. 2006 Jun;188(11):4037-50. doi: 10.1128/JB.02000-05.
4
Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92. doi: 10.1073/pnas.0602138103. Epub 2006 May 10.
5
The current ICE age: biology and evolution of SXT-related integrating conjugative elements.
Plasmid. 2006 May;55(3):173-83. doi: 10.1016/j.plasmid.2006.01.001. Epub 2006 Mar 13.
6
The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties.
J Bacteriol. 2006 Mar;188(5):1999-2013. doi: 10.1128/JB.188.5.1999-2013.2006.
7
Differentiation of regions with atypical oligonucleotide composition in bacterial genomes.
BMC Bioinformatics. 2005 Oct 14;6:251. doi: 10.1186/1471-2105-6-251.
8
Towards a genome-based taxonomy for prokaryotes.
J Bacteriol. 2005 Sep;187(18):6258-64. doi: 10.1128/JB.187.18.6258-6264.2005.
9
Evolutionary origins of genomic repertoires in bacteria.
PLoS Biol. 2005 May;3(5):e130. doi: 10.1371/journal.pbio.0030130. Epub 2005 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验