Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
Nucleic Acids Res. 2021 Feb 26;49(4):2114-2125. doi: 10.1093/nar/gkab006.
Bacteria deploy multiple defenses to prevent mobile genetic element (MGEs) invasion. CRISPR-Cas immune systems use RNA-guided nucleases to target MGEs, which counter with anti-CRISPR (Acr) proteins. Our understanding of the biology and co-evolutionary dynamics of the common Type I-C CRISPR-Cas subtype has lagged because it lacks an in vivo phage-host model system. Here, we show the anti-phage function of a Pseudomonas aeruginosa Type I-C CRISPR-Cas system encoded on a conjugative pKLC102 island, and its Acr-mediated inhibition by distinct MGEs. Seven genes with anti-Type I-C function (acrIC genes) were identified, many with highly acidic amino acid content, including previously described DNA mimic AcrIF2. Four of the acr genes were broad spectrum, also inhibiting I-E or I-F P. aeruginosa CRISPR-Cas subtypes. Dual inhibition comes at a cost, however, as simultaneous expression of Type I-C and I-F systems renders phages expressing the dual inhibitor AcrIF2 more sensitive to targeting. Mutagenesis of numerous acidic residues in AcrIF2 did not impair anti-I-C or anti-I-F function per se but did exacerbate inhibition defects during competition, suggesting that excess negative charge may buffer DNA mimics against competition. Like AcrIF2, five of the Acr proteins block Cascade from binding DNA, while two function downstream, likely preventing Cas3 recruitment or activity. One such inhibitor, AcrIC3, is found in an 'anti-Cas3' cluster within conjugative elements, encoded alongside bona fide Cas3 inhibitors AcrIF3 and AcrIE1. Our findings demonstrate an active battle between an MGE-encoded CRISPR-Cas system and its diverse MGE targets.
细菌会部署多种防御机制来防止移动遗传元件 (MGE) 的入侵。CRISPR-Cas 免疫系统利用 RNA 引导的核酸酶靶向 MGE,而 MGE 则会利用抗 CRISPR (Acr) 蛋白进行反击。由于缺乏体内噬菌体-宿主模型系统,我们对常见的 I 型-C CRISPR-Cas 亚型的生物学和协同进化动态的理解一直较为滞后。在这里,我们展示了编码在可接合 pKLC102 岛上的铜绿假单胞菌 I 型-C CRISPR-Cas 系统的抗噬菌体功能,以及其被不同 MGE 介导的抑制作用。我们鉴定了七个具有抗 I 型-C 功能的基因(acrIC 基因),其中许多基因具有高度酸性氨基酸含量,包括先前描述的 DNA 模拟物 AcrIF2。四个 acr 基因具有广谱抑制作用,也能抑制 I-E 或 I-F P. aeruginosa CRISPR-Cas 亚型。然而,双重抑制是有代价的,因为同时表达 I 型-C 和 I-F 系统会使表达双重抑制剂 AcrIF2 的噬菌体更容易受到靶向。对 AcrIF2 中许多酸性残基的诱变本身不会损害抗 I-C 或抗 I-F 功能,但会在竞争过程中加剧抑制缺陷,这表明过多的负电荷可能会缓冲 DNA 模拟物免受竞争的影响。与 AcrIF2 类似,五种 Acr 蛋白会阻止 Cascade 与 DNA 结合,而两种蛋白则在下游发挥作用,可能会阻止 Cas3 的募集或活性。其中一种抑制剂 AcrIC3 存在于可接合元件中的“抗 Cas3”簇中,与真正的 Cas3 抑制剂 AcrIF3 和 AcrIE1 一起编码。我们的研究结果表明,MGE 编码的 CRISPR-Cas 系统与其多种 MGE 靶标之间存在一场激烈的战斗。