Suppr超能文献

封闭微流控通道中的微管运输、浓度和排列

Microtubule transport, concentration and alignment in enclosed microfluidic channels.

作者信息

Huang Ying-Ming, Uppalapati Maruti, Hancock William O, Jackson Thomas N

机构信息

Center for Thin Film Devices and Department of Electrical Engineering, Materials Research Institute, Penn State University, University Park, PA 16802, USA.

出版信息

Biomed Microdevices. 2007 Apr;9(2):175-84. doi: 10.1007/s10544-006-9019-1.

Abstract

The kinesin-microtubule system has emerged as a versatile model system for biologically-derived microscale transport. While kinesin motors in cells transport cargo along static microtubule tracks, for in vitro transport applications it is preferable to invert the system and transport cargo-functionalized microtubules along immobilized kinesin motors. However, for efficient cargo transport and to enable this novel transport system to be interfaced with traditional microfluidics, it is important to fabricate enclosed microchannels that are compatible with kinesin motors and microtubules, that enable fluorescence imaging of microtubule movement, and that provide fluidic connections for sample introduction. Here we construct a three-tier hierarchical system of microfluidic channels that links microscale transport channels to macroscopic fluid connections. Shallow microchannels (5 microm wide and 1 microm deep) are etched in a glass substrate and bonded to a cover glass using PMMA as an adhesive, while intermediate channels (approximately 100 microm wide) serve as reservoirs and connect to 250 microm deep microchannels that hold fine gauge tubing for fluid injection. To demonstrate the utility of this device, we first show the performance of a directional rectifier that redirects 96% of moving microtubules and, because any microtubules that detach rapidly rebind to the motor-coated surface, suffers no microtubule loss over time. Second, we develop an approach, using a headless kinesin construct, to eliminate gradients in motor adsorption and microtubule binding in the enclosed channels, which enables precise control of kinesin density in the microchannels. Finally, we show that a 60 microm diameter circular ring functionalized with motors concentrates and aligns bundles of approximately 3000 uniformly oriented microtubules, while suffering negligible ATP depletion. These aligned isopolar microtubules are an important tool for microscale transport applications and can be employed as a model in vitro system for studying kinesin-driven microtubule organization in cells.

摘要

驱动蛋白 - 微管系统已成为用于生物衍生的微观运输的通用模型系统。虽然细胞中的驱动蛋白马达沿着静态微管轨道运输货物,但对于体外运输应用,最好颠倒该系统,使货物功能化的微管沿着固定的驱动蛋白马达移动。然而,为了实现高效的货物运输并使这种新型运输系统能够与传统微流体技术相结合,制造与驱动蛋白马达和微管兼容、能够对微管运动进行荧光成像并为样品引入提供流体连接的封闭微通道非常重要。在这里,我们构建了一个三层分级微流体通道系统,将微观运输通道与宏观流体连接起来。浅微通道(宽5微米,深1微米)蚀刻在玻璃基板上,并使用聚甲基丙烯酸甲酯作为粘合剂与盖玻片粘合,而中间通道(约100微米宽)用作储液器,并连接到250微米深的微通道,这些微通道中装有用于流体注入的细管。为了证明该装置的实用性,我们首先展示了一种方向整流器的性能,该整流器能使96%的移动微管转向,并且由于任何快速脱离的微管都会迅速重新结合到涂有马达的表面,因此随着时间的推移不会出现微管损失。其次,我们开发了一种方法,使用无头驱动蛋白构建体,以消除封闭通道中马达吸附和微管结合的梯度,从而能够精确控制微通道中驱动蛋白的密度。最后,我们表明,用马达功能化的60微米直径的圆环能够浓缩并排列大约3000根均匀取向的微管束,同时ATP消耗可忽略不计。这些排列的等极微管是微观运输应用的重要工具,可作为研究细胞中驱动蛋白驱动的微管组织的体外模型系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验