Jia Zhiyuan, Karpeev Dmitry, Aranson Igor S, Bates Peter W
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051905. doi: 10.1103/PhysRevE.77.051905. Epub 2008 May 8.
We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the "computational bottlenecks" associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.
我们对与分子马达相互作用的微管自组织进行了蒙特卡罗类型的模拟研究。我们将微管建模为等长的刚性极性杆,在平面内表现出各向异性扩散。通过指定某些概率碰撞规则来隐式引入分子马达,这些规则会导致杆的重新排列。通过简单的即时碰撞对复杂的微管 - 马达相互作用进行这种近似,使我们能够绕过与扩散细节、马达动力学以及微管重新定向相关的“计算瓶颈”。因此,我们能够在非常大的时间尺度上对大量微管和马达进行模拟。这个简单的模型再现了体外实验中观察到的所有重要现象:低马达密度下形成涡旋,高马达密度下形成射线状星状体和束状结构。