Balogh Edina, He Zhenjie, Hsieh Wenyuan, Liu Shuang, Tóth Eva
Laboratoire de chimie inorganique et bioinorganique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Inorg Chem. 2007 Jan 8;46(1):238-50. doi: 10.1021/ic0616582.
Mn2+ has five unpaired d-electrons, a long electronic relaxation time, and labile water exchange, all of which make it an attractive candidate for contrast agent application in medical magnetic resonance imaging. In the quest for stable and nonlabile Mn2+ complexes, we explored a novel dimeric triazacyclononane-based ligand bearing carboxylate functional groups, H4ENOTA. The protonation constants of the ligand and the stability constants of the complexes formed with some endogenously important metals (Ca2+, Cu2+, Zn2+), as well as with Mn2+ and Ce3+, have been assessed by NMR methods, potentiometry, and UV-vis spectrophotometry. Overall, the thermodynamic stability of the complexes is lower as compared to that of the corresponding NOTA analogues (H3NOTA, 1,4,7-triaazacyclononane-1,4,7-triacetic acid). The crystal structure of Mn2(ENOTA)(H2O) x 5H2O contains two six-coordinated Mn2+, in addition to the three amine nitrogens and the two oxygens from the pendent monodentate carboxylate groups, and one water (Mn2) or one bridging carboxylate oxygen (Mn1) completes the coordination sphere of the metal ion. In an aqueous solution, this bridging carboxylate is replaced by a water molecule, as evidenced by the 17O chemical shifts and proton relaxivity data that point to monohydration for both metal ions in the dinuclear complex. A variable-temperature and -pressure 17O NMR study has been performed on [Mn2(ENOTA)(H2O)2] to assess the rate and, for the first time on a Mn2+ chelate, also the mechanism of the water exchange. The inner sphere water is slightly more labile in [Mn2(ENOTA)(H2O)2] (k298ex = 5.5 x 107 s-1) than in the aqua ion (2.1 x 107 s-1, Merbach, A. E.; et al. Inorg. Chem. 1980, 19, 3696). The water exchange proceeds via an almost limiting associative mechanism, as evidenced by the large negative activation volume (deltaV = -10.7 cm3 mol-1). The proton relaxivities measured on [Mn2(ENOTA)(H2O)2] show a low-field dispersion at approximately 0.1 MHz arising from a contact interaction between the MnII electron spin and the water proton nuclear spins.
锰离子(Mn2+)有五个未成对的d电子,电子弛豫时间长,且水交换不稳定,所有这些特性使其成为医学磁共振成像中造影剂应用的一个有吸引力的候选物。为了寻找稳定且不易解离的Mn2+配合物,我们探索了一种带有羧基官能团的新型基于二聚三氮杂环壬烷的配体H4ENOTA。通过核磁共振方法、电位滴定法和紫外可见分光光度法评估了该配体的质子化常数以及与一些内源性重要金属(Ca2+、Cu2+、Zn2+)以及Mn2+和Ce3+形成的配合物的稳定性常数。总体而言,与相应的NOTA类似物(H3NOTA,1,4,7 - 三氮杂环壬烷 - 1,4,7 - 三乙酸)相比,这些配合物的热力学稳定性较低。Mn2(ENOTA)(H2O)·5H2O的晶体结构除了三个胺氮原子和来自悬垂单齿羧基的两个氧原子外,还包含两个六配位的Mn2+,并且一个水分子(Mn2)或一个桥连羧基氧原子(Mn1)完成了金属离子的配位球。在水溶液中,这种桥连羧基被一个水分子取代,17O化学位移和质子弛豫率数据表明双核配合物中的两种金属离子均为一水合状态,这证明了这一点。对[Mn2(ENOTA)(H2O)2]进行了变温和变压17O核磁共振研究,以评估水交换速率,并且首次在Mn2+螯合物上研究了水交换的机制。[Mn2(ENOTA)(H2O)2]中内球水分子的交换比水合离子(2.1×107 s-1,Merbach, A. E.; et al. Inorg. Chem. 1980, 19, 3696)中的略不稳定(k298ex = 5.5×107 s-1)。水交换通过几乎是极限缔合机制进行,这由大的负活化体积(ΔV = -10.7 cm3 mol-1)证明。在[Mn2(ENOTA)(H2O)2]上测量的质子弛豫率在约0.1 MHz处显示出低场色散,这是由MnII电子自旋与水质子核自旋之间的接触相互作用引起的。