Suppr超能文献

常染色体隐性高胆固醇血症中低密度脂蛋白清除功能受损,但极低密度脂蛋白清除功能未受影响。

Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia.

作者信息

Jones Christopher, Garuti Rita, Michaely Peter, Li Wei-Ping, Maeda Nobuyo, Cohen Jonathan C, Herz Joachim, Hobbs Helen H

机构信息

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

J Clin Invest. 2007 Jan;117(1):165-74. doi: 10.1172/JCI29415.

Abstract

Genetic defects in LDL clearance result in severe hypercholesterolemia and premature atherosclerosis. Mutations in the LDL receptor (LDLR) cause familial hypercholesterolemia (FH), the most severe form of genetic hypercholesterolemia. A phenocopy of FH, autosomal recessive hypercholesterolemia (ARH), is due to mutations in an adaptor protein involved in LDLR internalization. Despite comparable reductions in LDL clearance rates, plasma LDL levels are substantially lower in ARH than in FH. To determine the metabolic basis for this difference, we examined the synthesis and catabolism of VLDL in murine models of FH (Ldlr(-/-)) and ARH (Arh(-/-)). The hyperlipidemic response to a high-sucrose diet was greatly attenuated in Arh(-/-) mice compared with Ldlr(-/-) mice despite similar rates of VLDL secretion. The rate of VLDL clearance was significantly higher in Arh(-/-) mice than in Ldlr(-/-) mice, suggesting that LDLR-dependent uptake of VLDL is maintained in the absence of ARH. Consistent with these findings, hepatocytes from Arh(-/-) mice (but not Ldlr(-/-) mice) internalized beta-migrating VLDL (beta-VLDL). These results demonstrate that ARH is not required for LDLR-dependent uptake of VLDL by the liver. The preservation of VLDL remnant clearance attenuates the phenotype of ARH and likely contributes to greater responsiveness to statins in ARH compared with FH.

摘要

低密度脂蛋白清除的基因缺陷会导致严重的高胆固醇血症和早发性动脉粥样硬化。低密度脂蛋白受体(LDLR)的突变会导致家族性高胆固醇血症(FH),这是遗传性高胆固醇血症最严重的形式。FH的一种表型模拟,即常染色体隐性高胆固醇血症(ARH),是由参与LDLR内化的衔接蛋白突变引起的。尽管LDL清除率有类似程度的降低,但ARH患者的血浆LDL水平明显低于FH患者。为了确定这种差异的代谢基础,我们在FH(Ldlr(-/-))和ARH(Arh(-/-))的小鼠模型中研究了极低密度脂蛋白(VLDL)的合成和分解代谢。尽管VLDL分泌速率相似,但与Ldlr(-/-)小鼠相比,Arh(-/-)小鼠对高糖饮食的高脂血症反应大大减弱。Arh(-/-)小鼠的VLDL清除率明显高于Ldlr(-/-)小鼠,这表明在没有ARH的情况下,VLDL的LDLR依赖性摄取得以维持。与这些发现一致,Arh(-/-)小鼠(而非Ldlr(-/-)小鼠)的肝细胞内化了β迁移的VLDL(β-VLDL)。这些结果表明,肝脏对VLDL的LDLR依赖性摄取不需要ARH。VLDL残余物清除的保留减轻了ARH的表型,并且可能导致ARH与FH相比对他汀类药物有更大的反应性。

相似文献

1
Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia.
J Clin Invest. 2007 Jan;117(1):165-74. doi: 10.1172/JCI29415.
2
Disruption of autosomal recessive hypercholesterolemia gene shows different phenotype in vitro and in vivo.
Circ Res. 2004 Oct 29;95(9):945-52. doi: 10.1161/01.RES.0000146946.78540.46. Epub 2004 Oct 7.
4
S-nitrosylation of ARH is required for LDL uptake by the LDL receptor.
J Lipid Res. 2013 Jun;54(6):1550-1559. doi: 10.1194/jlr.M033167. Epub 2013 Apr 7.
6
A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.
Gene. 2013 May 25;521(1):200-3. doi: 10.1016/j.gene.2013.03.034. Epub 2013 Mar 17.
7
Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol.
J Lipid Res. 2016 May;57(5):809-17. doi: 10.1194/jlr.M063065. Epub 2016 Mar 22.
9
Clinical and biochemical characterisation of patients with autosomal recessive hypercholesterolemia (ARH).
Nutr Metab Cardiovasc Dis. 2003 Oct;13(5):278-86. doi: 10.1016/s0939-4753(03)80032-7.

引用本文的文献

2
Glucagon receptor signaling at white adipose tissue does not regulate lipolysis.
Am J Physiol Endocrinol Metab. 2022 Oct 1;323(4):E389-E401. doi: 10.1152/ajpendo.00078.2022. Epub 2022 Aug 24.
3
Deletion of LDLRAP1 Induces Atherosclerotic Plaque Formation, Insulin Resistance, and Dysregulated Insulin Response in Adipose Tissue.
Am J Pathol. 2022 Jul;192(7):1092-1108. doi: 10.1016/j.ajpath.2022.03.014. Epub 2022 Apr 20.
4
GALNT2 regulates ANGPTL3 cleavage in cells and in vivo of mice.
Sci Rep. 2020 Sep 30;10(1):16168. doi: 10.1038/s41598-020-73388-3.
5
Science, serendipity, and the single degree.
J Clin Invest. 2018 Oct 1;128(10):4218-4223. doi: 10.1172/JCI124404.
6
Endocytosis and Physiology: Insights from Disabled-2 Deficient Mice.
Front Cell Dev Biol. 2016 Nov 25;4:129. doi: 10.3389/fcell.2016.00129. eCollection 2016.
7
Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins.
J Biol Chem. 2016 May 13;291(20):10659-76. doi: 10.1074/jbc.M116.719955. Epub 2016 Mar 24.
8
Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol.
J Lipid Res. 2016 May;57(5):809-17. doi: 10.1194/jlr.M063065. Epub 2016 Mar 22.

本文引用的文献

1
Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison.
Atherosclerosis. 2006 Oct;188(2):398-405. doi: 10.1016/j.atherosclerosis.2005.11.016. Epub 2005 Dec 15.
3
Determining hepatic triglyceride production in mice: comparison of poloxamer 407 with Triton WR-1339.
J Lipid Res. 2005 Sep;46(9):2023-8. doi: 10.1194/jlr.D500019-JLR200. Epub 2005 Jul 1.
4
Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein.
J Biol Chem. 2005 May 13;280(19):19270-80. doi: 10.1074/jbc.M501029200. Epub 2005 Feb 22.
5
Disruption of autosomal recessive hypercholesterolemia gene shows different phenotype in vitro and in vivo.
Circ Res. 2004 Oct 29;95(9):945-52. doi: 10.1161/01.RES.0000146946.78540.46. Epub 2004 Oct 7.
7
Autosomal recessive hypercholesterolaemia: long-term follow up and response to treatment.
Atherosclerosis. 2004 May;174(1):165-72. doi: 10.1016/j.atherosclerosis.2004.01.020.
8
Receptor clustering is involved in Reelin signaling.
Mol Cell Biol. 2004 Feb;24(3):1378-86. doi: 10.1128/MCB.24.3.1378-1386.2004.
9
Clinical and biochemical characterisation of patients with autosomal recessive hypercholesterolemia (ARH).
Nutr Metab Cardiovasc Dis. 2003 Oct;13(5):278-86. doi: 10.1016/s0939-4753(03)80032-7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验