Suppr超能文献

光合细菌细胞色素bc1复合物的质子转运:引入活化的Q循环。

Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.

作者信息

Mulkidjanian Armen Y

机构信息

A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.

出版信息

Photochem Photobiol Sci. 2007 Jan;6(1):19-34. doi: 10.1039/b517522d. Epub 2006 Dec 7.

Abstract

The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.

摘要

细胞色素bc1复合物是质子转运二聚体膜泛醇:细胞色素c氧化还原酶,在绝大多数电子传递链中起“枢纽”作用。在每个泛醇分子在带正电荷的膜侧的催化中心P被氧化后,根据米切尔的Q循环机制,释放出的两个电子会流向不同的受体。一个被[2Fe-2S]铁硫 Rieske 蛋白获取,进一步传递给细胞色素c1。另一个电子穿过膜,通过细胞色素b的低电位和高电位血红素,到达相对膜侧的另一个泛醌结合位点N。据推测,两个泛醇分子必须被中心P氧化,首先在中心N产生一个半醌,然后将这个半醌还原为泛醇。本综述聚焦于光合紫色细菌中细胞色素bc1复合物的运作。它们的膜提供了一个独特的系统,通过光驱动的能量转换酶产生膜电压,可以通过天然类胡萝卜素的光谱变化来追踪,并与电子和质子转移反应相关联。提出了一种“活化Q循环”作为一种新机制,与关于电子/质子耦合的现有实验数据一致。在生理条件下,二聚体细胞色素bc1复合物被认为通过中心N对膜泛醇的快速氧化而持续被激活,在该中心产生一个结合的半醌,并在酶的另一个单体中产生一个还原的高电位血红素b。然后,中心P中每个泛醇分子的氧化之后是中心N中泛醇的形成、质子转运和膜电压的产生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验