Dibrova Daria V, Cherepanov Dmitry A, Galperin Michael Y, Skulachev Vladimir P, Mulkidjanian Armen Y
School of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany; School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia; Institute of Mitoengineering, Lomonosov Moscow State University, Moscow 119992, Russia.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1407-27. doi: 10.1016/j.bbabio.2013.07.006. Epub 2013 Jul 19.
This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On the one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
本综述追溯了细胞色素bc复合物的进化历程,从其早期在原核生物谱系中的传播,直至线粒体细胞色素bc1复合物(复合物III)及其在细胞凋亡中的作用。系统基因组分析结果表明,具有短细胞色素b的细菌细胞色素b6f型复合物是在进化上先于具有长细胞色素b的细胞色素bc1型复合物的古老形式。b6f型和bc1型复合物的共同祖先可能类似于在嗜太阳杆菌科和一些浮霉菌门中发现的b6f型复合物。细胞色素bc操纵子的横向转移可以解释古细菌多次获得不同类型细菌细胞色素bc复合物的情况。大气的逐渐氧化可能是推动细胞色素bc复合物进一步分化和传播的关键进化因素。一方面,氧气可以用作非常有效的末端电子受体。另一方面,bc复合物的成分自动氧化会导致活性氧(ROS)的产生,这就需要b6f型和bc1型复合物以及其他功能耦合蛋白进行多种适应性变化。本文提出了含心磷脂的线粒体细胞色素bc1复合物逐渐参与内在凋亡途径的详细设想,其中该复合物作为凋亡触发因子的功能被视为一种加速清除具有不可修复损伤、产生ROS的线粒体的细胞的方式。本文是名为:呼吸复合物III及相关bc复合物的特刊的一部分。