Chen Kang, Neu Axel, Howard Allyson L, Földy Csaba, Echegoyen Julio, Hilgenberg Lutz, Smith Martin, Mackie Ken, Soltesz Ivan
Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA.
J Neurosci. 2007 Jan 3;27(1):46-58. doi: 10.1523/JNEUROSCI.3966-06.2007.
Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that activity-dependent long-term DSI potentiation takes place in hippocampal slices after tetanic stimulation of Schaffer collateral synapses. This activity-dependent, long-term plasticity of endocannabinoid signaling was specific to GABAergic synapses, as it occurred without increases in the depolarization-induced suppression of excitation. Induction of tetanus-induced DSI potentiation in vitro required a complex pathway involving AMPA/kainate and metabotropic glutamate receptor as well as CB1 receptor activation. Because DSI potentiation has been suggested to play a role in persistent limbic hyperexcitability after prolonged seizures in the developing brain, we used these mechanistic insights into activity-dependent DSI potentiation to test whether interference with the induction of DSI potentiation prevents seizure-induced long-term hyperexcitability. The results showed that the in vitro, tetanus-induced DSI potentiation was occluded by previous in vivo fever-induced (febrile) seizures, indicating a common pathway. Accordingly, application of CB1 receptor antagonists during febrile seizures in vivo blocked the seizure-induced persistent DSI potentiation, abolished the seizure-induced upregulation of CB1 receptors, and prevented the emergence of long-term limbic hyperexcitability. These results reveal a new form of activity-dependent, long-term plasticity of endocannabinoid signaling at perisomatic GABAergic synapses, and demonstrate that blocking the induction of this plasticity abolishes the long-term effects of prolonged febrile seizures in the developing brain.
去极化诱导的抑制作用(DSI)是一种内源性大麻素介导的短期可塑性机制,它将突触后Ca2+升高与突触前GABA释放减少联系起来。这种逆行突触机制的增益是否受到谷氨酸能兴奋性输入的长期调节尚不清楚。在这里,我们证明在海马切片中,对海马体联合突触进行强直刺激后会发生活动依赖性的长期DSI增强。内源性大麻素信号传导的这种活动依赖性长期可塑性对GABA能突触具有特异性,因为它在去极化诱导的兴奋抑制没有增加的情况下发生。体外强直诱导的DSI增强需要一条复杂的途径,涉及AMPA/海人藻酸受体、代谢型谷氨酸受体以及CB1受体激活。由于有人提出DSI增强在发育中的大脑长时间癫痫发作后持续性边缘系统过度兴奋中起作用,我们利用对活动依赖性DSI增强的这些机制性见解来测试干扰DSI增强的诱导是否能预防癫痫发作诱导的长期过度兴奋。结果表明,体外强直诱导的DSI增强被先前的体内发热诱导(热性)癫痫发作所阻断,这表明存在一条共同途径。因此,在体内热性癫痫发作期间应用CB1受体拮抗剂可阻断癫痫发作诱导的持续性DSI增强,消除癫痫发作诱导的CB1受体上调,并防止长期边缘系统过度兴奋的出现。这些结果揭示了在躯体周围GABA能突触处内源性大麻素信号传导的一种新的活动依赖性长期可塑性形式,并证明阻断这种可塑性的诱导可消除发育中的大脑长时间热性癫痫发作的长期影响。