Straiker Alex, Mackie Ken
Department of Anaesthesiology, University of Washington, Seattle, WA 98195, USA.
J Physiol. 2007 Feb 1;578(Pt 3):773-85. doi: 10.1113/jphysiol.2006.117499. Epub 2006 Nov 16.
Depolarization-induced suppression of excitation (DSE) and inhibition (DSI) are forms of short-term neuronal plasticity involving postsynaptic release of an endocannabinoid and the activation of presynaptic cannabinoid CB1 receptors. We have recently reported that CB1-dependent DSE can be elicited in autaptic cultures of excitatory hippocampal neurons of the mouse. We now report that the same preparation exhibits a parallel G(q)-coupled receptor-dependent production of endocannabinoids causing retrograde inhibition, also via CB1 receptors, which we will refer to as metabotropic suppression of excitation (MSE). We tested a spectrum of G(q)-coupled receptor agonists and found that both muscarinic and metabotropic glutamate receptors (group I) mediate retrograde inhibition via CB1 receptors in autaptic hippocampal neurons. Thus these neurons possess not only the pre- and postsynaptic machinery necessary for DSE but also that for MSE. This permitted a closer examination of MSE and its interaction with other aspects of the endocannabinoid retrograde signalling machinery: MSE mimics and occludes DSE and is itself occluded by the endocannabinoid 2-arachidonoyl glycerol (2-AG), consistent with 2-AG as a likely mediator of MSE. In contrast to DSE, MSE undergoes heterologous desensitization over the time course of minutes. In keeping with data reported for metabotropic suppression of inhibition (MSI) and DSI in the hippocampus, subthreshold MSE and DSE act synergistically. We additionally found that Delta9-tetrahydrocannabinol, which has been shown to attenuate DSE, antagonizes MSE. Finally, we have distinguished a neuronal subpopulation that exhibits DSE and a differential complement of MSE-mediating Gq-coupled receptors, making possible contrasting studies of MSE. Autaptic endocannabinoid signalling is rich, robust and complex in a deceptively simple package, including a previously unreported postsynaptic mechanism of adaptation in addition to known presynaptic CB1 desensitization. These adaptive sites offer novel targets for modulation of endogenous cannabinoid signalling.
去极化诱导的兴奋抑制(DSE)和抑制抑制(DSI)是短期神经元可塑性的形式,涉及内源性大麻素的突触后释放和突触前大麻素CB1受体的激活。我们最近报道,在小鼠兴奋性海马神经元的自突触培养物中可以引发CB1依赖性DSE。我们现在报道,相同的制剂表现出通过CB1受体引起逆行抑制的内源性大麻素的平行G(q)偶联受体依赖性产生,我们将其称为促代谢型兴奋抑制(MSE)。我们测试了一系列G(q)偶联受体激动剂,发现毒蕈碱型和促代谢型谷氨酸受体(I组)均通过自突触海马神经元中的CB1受体介导逆行抑制。因此,这些神经元不仅具有DSE所需的突触前和突触后机制,还具有MSE所需的机制。这使得对MSE及其与内源性大麻素逆行信号传导机制其他方面的相互作用进行更仔细的研究成为可能:MSE模拟并掩盖DSE,其本身被内源性大麻素2-花生四烯酸甘油酯(2-AG)所掩盖,这与2-AG作为MSE的可能介质一致。与DSE相反,MSE在数分钟的时间过程中经历异源脱敏。与海马中促代谢型抑制抑制(MSI)和DSI报道的数据一致,阈下MSE和DSE协同作用。我们还发现,已显示可减弱DSE的Δ9-四氢大麻酚可拮抗MSE。最后,我们区分了一个表现出DSE的神经元亚群和介导MSE的Gq偶联受体的不同补充,这使得对MSE进行对比研究成为可能。自突触内源性大麻素信号传导以看似简单的形式丰富、强大且复杂,除了已知的突触前CB1脱敏外,还包括一种以前未报道的突触后适应机制。这些适应性位点为调节内源性大麻素信号传导提供了新的靶点。