Doran M, Raicu D S, Furst J D, Settimi R, Schipma M, Chandler D P
Intelligent Multimedia Processing Laboratory, School of Computer Science, Telecommunications and Information Systems, DePaul University, Chicago, USA.
Bioinformatics. 2007 Feb 15;23(4):487-92. doi: 10.1093/bioinformatics/btl626. Epub 2007 Jan 3.
The capability of a custom microarray to discriminate between closely related DNA samples is demonstrated using a set of Bacillus anthracis strains. The microarray was developed as a universal fingerprint device consisting of 390 genome-independent 9mer probes. The genomes of B. anthracis strains are monomorphic and therefore, typically difficult to distinguish using conventional molecular biology tools or microarray data clustering techniques. Using support vector machines (SVMs) as a supervised learning technique, we show that a low-density fingerprint microarray contains enough information to discriminate between B. anthracis strains with 90% sensitivity using a reference library constructed from six replicate arrays and three replicates for new isolates.
使用一组炭疽芽孢杆菌菌株证明了定制微阵列区分密切相关DNA样本的能力。该微阵列被开发为一种通用指纹设备,由390个不依赖基因组的9聚体探针组成。炭疽芽孢杆菌菌株的基因组是单态的,因此,使用传统分子生物学工具或微阵列数据聚类技术通常很难区分。使用支持向量机(SVM)作为一种监督学习技术,我们表明,低密度指纹微阵列包含足够的信息,通过由六个重复阵列构建的参考文库和新分离株的三个重复样本,以90%的灵敏度区分炭疽芽孢杆菌菌株。