Suppr超能文献

用于病毒复制起点预测的最小二乘支持向量机方法

Least-Squares Support Vector Machine Approach to Viral Replication Origin Prediction.

作者信息

Cruz-Cano Raul, Chew David S H, Kwok-Pui Choi, Ming-Ying Leung

机构信息

Department of Computer and Information Sciences, Texas A&M University-Texarkana, Texarkana, TX, 75501, USA,

出版信息

INFORMS J Comput. 2010 Jun 1;22(3):457-470. doi: 10.1287/ijoc.1090.0360.

Abstract

Replication of their DNA genomes is a central step in the reproduction of many viruses. Procedures to find replication origins, which are initiation sites of the DNA replication process, are therefore of great importance for controlling the growth and spread of such viruses. Existing computational methods for viral replication origin prediction have mostly been tested within the family of herpesviruses. This paper proposes a new approach by least-squares support vector machines (LS-SVMs) and tests its performance not only on the herpes family but also on a collection of caudoviruses coming from three viral families under the order of caudovirales. The LS-SVM approach provides sensitivities and positive predictive values superior or comparable to those given by the previous methods. When suitably combined with previous methods, the LS-SVM approach further improves the prediction accuracy for the herpesvirus replication origins. Furthermore, by recursive feature elimination, the LS-SVM has also helped find the most significant features of the data sets. The results suggest that the LS-SVMs will be a highly useful addition to the set of computational tools for viral replication origin prediction and illustrate the value of optimization-based computing techniques in biomedical applications.

摘要

其DNA基因组的复制是许多病毒繁殖过程中的核心步骤。因此,寻找作为DNA复制过程起始位点的复制起点的程序对于控制此类病毒的生长和传播至关重要。现有的用于病毒复制起点预测的计算方法大多在疱疹病毒家族中进行了测试。本文提出了一种基于最小二乘支持向量机(LS-SVM)的新方法,并不仅在疱疹病毒家族上测试了其性能,还在来自长尾病毒目下三个病毒家族的一组长尾噬菌体上进行了测试。LS-SVM方法提供的敏感性和阳性预测值优于或与先前方法相当。当与先前方法适当地结合时,LS-SVM方法进一步提高了疱疹病毒复制起点的预测准确性。此外,通过递归特征消除,LS-SVM还帮助找到了数据集的最重要特征。结果表明,LS-SVM将成为病毒复制起点预测计算工具集的一个非常有用的补充,并说明了基于优化的计算技术在生物医学应用中的价值。

相似文献

4
Noniterative Sparse LS-SVM Based on Globally Representative Point Selection.基于全局代表性点选择的非迭代稀疏最小二乘支持向量机
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):788-798. doi: 10.1109/TNNLS.2020.2979466. Epub 2021 Feb 4.
7
Global-local least-squares support vector machine (GLocal-LS-SVM).全局-局部最小二乘支持向量机(GLocal-LS-SVM)。
PLoS One. 2023 Apr 27;18(4):e0285131. doi: 10.1371/journal.pone.0285131. eCollection 2023.

本文引用的文献

1
A review of feature selection techniques in bioinformatics.生物信息学中特征选择技术综述。
Bioinformatics. 2007 Oct 1;23(19):2507-17. doi: 10.1093/bioinformatics/btm344. Epub 2007 Aug 24.
7
The reach of the genome signature in prokaryotes.原核生物中基因组特征的范围。
BMC Evol Biol. 2006 Oct 13;6:84. doi: 10.1186/1471-2148-6-84.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验