Gohlke Julia M, Griffith William C, Faustman Elaine M
Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA.
Cereb Cortex. 2007 Oct;17(10):2433-42. doi: 10.1093/cercor/bhl151. Epub 2007 Jan 4.
This paper presents a computational model allowing quantitative simulations of acquisition of neocortical neuronal number across mammalian species. When extrapolating scientific findings from rodents to humans, it is particularly pertinent to acknowledge the importance of the accelerated enlargement of the neocortex during human evolution. Neocortex development is marked by discrete stages of neural progenitor cell proliferation and death, neuronal differentiation, and neuronal programmed cell death. We have developed computational models of human and rhesus monkey neocortical neuronal cell acquisition based on experimentally derived parameters of cell cycle length, commitment to cell cycle exit, and cell death. Our model results agree with independent stereological studies estimating neocortical neuron number in adult and developing rhesus monkey and human. Comparisons of our primate models with previously developed rodent models suggest correlations between the lengthening of the duration of the neuronogenesis period and a lengthening of the cellular processes of cell cycle progression and death can account for the vast increase in size of the primate neocortex. Furthermore, when compared with rodents, we predict that cell death may play a larger role in shaping the primate neocortex. Our mathematical models of the development and evolution of the neocortex provide a quantitative, biologically based construct for extrapolation between rodent and humans. These models can assist in focusing future experimental research on the differing mechanisms of rodent versus human neocortical development.
本文提出了一种计算模型,可对跨哺乳动物物种的新皮质神经元数量的获取进行定量模拟。在将啮齿动物的科学发现外推至人类时,认识到人类进化过程中新皮质加速扩大的重要性尤为关键。新皮质发育的特征是神经祖细胞增殖与死亡、神经元分化以及神经元程序性细胞死亡的离散阶段。我们基于细胞周期长度、退出细胞周期的倾向以及细胞死亡等实验得出的参数,开发了人类和恒河猴新皮质神经元细胞获取的计算模型。我们的模型结果与独立的体视学研究结果一致,这些研究估计了成年和发育中的恒河猴及人类的新皮质神经元数量。将我们的灵长类动物模型与先前开发的啮齿动物模型进行比较表明,神经元生成期持续时间的延长与细胞周期进程和死亡的细胞过程的延长之间的相关性,可以解释灵长类动物新皮质大小的大幅增加。此外,与啮齿动物相比,我们预测细胞死亡可能在塑造灵长类动物新皮质中发挥更大作用。我们关于新皮质发育和进化的数学模型提供了一种基于生物学的定量构建,用于在啮齿动物和人类之间进行外推。这些模型有助于将未来的实验研究聚焦于啮齿动物与人类新皮质发育的不同机制。