Broadhurst Matthew S, Akst Lee M, Burns James A, Kobler James B, Heaton James T, Anderson R Rox, Zeitels Steven M
Department of Surgery, Harvard Medical School, Center for Laryngeal Surgery and Voice Rehabilitation, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
Laryngoscope. 2007 Feb;117(2):220-5. doi: 10.1097/mlg.0b013e31802b5c1c.
Selective vascular ablation (photoangiolysis) using pulsed lasers that target hemoglobin is an effective treatment strategy for many vocal fold lesions. However, vessel rupture with extravasation of blood reduces selectivity for vessels, which is frequently observed with the 0.45-ms, 585-nm pulsed dye laser. Previous studies have shown that vessel rupture is the result of vaporization of blood, an event that varies with laser pulse width and pulse fluence (energy per unit area). Clinical observations using a 532-nm wavelength pulsed potassium-titanyl-phosphate (KTP) laser revealed less laser-induced hemorrhage than the pulsed dye laser. This study investigated settings for the pulsed KTP laser to achieve selective vessel destruction without rupture using the avian chorioallantoic membrane under conditions similar to flexible laryngoscopic delivery of the laser in clinical practice.
The chick chorioallantoic membrane offers convenient access to many small blood vessels similar in size to those targeted in human vocal fold. Using a 532-nm pulsed KTP laser, pulse width, pulse energy, and working distance from the optical delivery fiber were varied to assess influence on the ability to achieve vessel coagulation without vessel wall rupture.
Third-order vessels (n = 135) were irradiated: Energy (471-550 mJ), pulse width (10, 15, 30 ms), and fiber-to-tissue distance (1 mm, 3 mm) were varied systematically.
Selective vessel destruction without vessel wall rupture was more often achieved by increasing pulse width, increasing the fiber-to-tissue distance, and decreasing energy. Vessel destruction without rupture was consistently achieved using 15- or 30-ms pulses with a fiber-to-tissue distance of 3 mm (pulse fluence of 13-16 J/cm).
This study substantiates our clinical observation that a 532-nm pulsed KTP laser was effective for ablating microcirculation while minimizing vessel wall rupture and hemorrhage.
使用靶向血红蛋白的脉冲激光进行选择性血管消融(光血管溶解)是治疗许多声带病变的有效策略。然而,血管破裂伴血液外渗会降低对血管的选择性,这在0.45毫秒、585纳米的脉冲染料激光治疗中经常出现。先前的研究表明,血管破裂是血液汽化的结果,这一事件会随激光脉冲宽度和脉冲能量密度(单位面积的能量)而变化。使用532纳米波长的脉冲磷酸钛钾(KTP)激光进行的临床观察显示,与脉冲染料激光相比,激光诱导的出血更少。本研究在类似于临床实践中柔性喉镜下激光递送的条件下,利用鸡胚绒毛尿囊膜研究了脉冲KTP激光的参数设置,以实现无破裂的选择性血管破坏。
鸡胚绒毛尿囊膜便于观察许多大小与人声带目标血管相似的小血管。使用532纳米脉冲KTP激光,改变脉冲宽度、脉冲能量以及光学传输光纤与组织的工作距离,以评估对实现无血管壁破裂的血管凝固能力的影响。
对三级血管(n = 135)进行照射:系统地改变能量(471 - 550毫焦)、脉冲宽度(10、15、30毫秒)以及光纤与组织的距离(1毫米、3毫米)。
通过增加脉冲宽度、增加光纤与组织的距离以及降低能量,更常实现无血管壁破裂的选择性血管破坏。使用15或30毫秒的脉冲,光纤与组织距离为3毫米(脉冲能量密度为13 - 16焦/平方厘米)时,始终能实现无破裂的血管破坏。
本研究证实了我们的临床观察结果,即532纳米脉冲KTP激光在消融微循环的同时,能最大限度地减少血管壁破裂和出血,效果显著。