Kepecs Adam, van Rossum Mark C W, Song Sen, Tegner Jesper
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
Biol Cybern. 2002 Dec;87(5-6):446-58. doi: 10.1007/s00422-002-0358-6.
Recent experimental observations of spike-timing-dependent synaptic plasticity (STDP) have revitalized the study of synaptic learning rules. The most surprising aspect of these experiments lies in the observation that synapses activated shortly after the occurrence of a postsynaptic spike are weakened. Thus, synaptic plasticity is sensitive to the temporal ordering of pre- and postsynaptic activation. This temporal asymmetry has been suggested to underlie a range of learning tasks. In the first part of this review we highlight some of the common themes from a range of findings in the framework of predictive coding. As an example of how this principle can be used in a learning task, we discuss a recent model of cortical map formation. In the second part of the review, we point out some of the differences in STDP models and their functional consequences. We discuss how differences in the weight-dependence, the time-constants and the non-linear properties of learning rules give rise to distinct computational functions. In light of these computational issues raised, we review current experimental findings and suggest further experiments to resolve some controversies.
近期关于尖峰时间依赖型突触可塑性(STDP)的实验观察重新激发了对突触学习规则的研究。这些实验最令人惊讶的方面在于观察到,在突触后尖峰出现后不久被激活的突触会被削弱。因此,突触可塑性对突触前和突触后激活的时间顺序敏感。这种时间不对称性被认为是一系列学习任务的基础。在本综述的第一部分,我们在预测编码框架下突出了一系列研究结果中的一些共同主题。作为该原理如何在学习任务中应用的一个例子,我们讨论了最近的皮质图谱形成模型。在综述的第二部分,我们指出了STDP模型中的一些差异及其功能后果。我们讨论了权重依赖性、时间常数和学习规则的非线性特性方面的差异如何产生不同的计算功能。鉴于所提出的这些计算问题,我们回顾了当前的实验结果,并提出进一步的实验以解决一些争议。