Suppr超能文献

超级脉冲:多层脉冲神经网络中的监督学习

SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

作者信息

Zenke Friedemann, Ganguli Surya

机构信息

Department of Applied Physics, Stanford University, Stanford, CA 94305, U.S.A., and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, U.K.

Department of Applied Physics, Stanford University, Stanford, CA 94305, U.S.A.

出版信息

Neural Comput. 2018 Jun;30(6):1514-1541. doi: 10.1162/neco_a_01086. Epub 2018 Apr 13.

Abstract

A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

摘要

大脑中的绝大多数计算是由脉冲神经网络执行的。尽管这种脉冲现象无处不在,但目前我们仍不清楚生物脉冲神经回路在体内是如何学习和计算的,以及如何在计算机模拟的人工脉冲电路中实现这些能力。在这里,我们重新审视了时间编码多层脉冲神经网络中的监督学习问题。首先,通过使用替代梯度方法,我们推导出了SuperSpike,这是一种基于非线性电压的三因素学习规则,能够训练确定性积分发放神经元的多层网络,以对时空脉冲模式进行非线性计算。其次,受近期反馈对齐结果的启发,我们比较了在不同信用分配策略下,我们的学习规则将输出误差传播到隐藏单元时的性能。具体来说,我们测试了均匀、对称和随机反馈,发现简单任务可以用任何类型的反馈解决,而更复杂的任务需要对称反馈。总之,我们的结果为通过提高训练脉冲神经网络解决涉及不同时空脉冲时间模式之间转换的非线性问题的能力,从而更好地科学理解脉冲神经网络中的学习和计算打开了大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c439/6118408/3ead203df4ed/neco-30-1514-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验