Suppr超能文献

虚拟毛细胞,II:机械电转导参数评估

A virtual hair cell, II: evaluation of mechanoelectric transduction parameters.

作者信息

Nam Jong-Hoon, Cotton John R, Grant Wally

机构信息

Department of Engineering Science and Mechanics, School of Biomedical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.

出版信息

Biophys J. 2007 Mar 15;92(6):1929-37. doi: 10.1529/biophysj.106.085092. Epub 2007 Jan 5.

Abstract

The virtual hair cell we have proposed utilizes a set of parameters related to its mechanoelectric transduction. In this work, we observed the effect of such channel gating parameters as the gating threshold, critical tension, resting tension, and Ca(2+) concentration. The gating threshold is the difference between the resting and channel opening tension exerted by the tip link assembly on the channel. The critical tension is the tension in the tip link assembly over which the channel cannot close despite Ca(2+) binding. Our results show that 1), the gating threshold dominated the initial sensitivity of the hair cell; 2), the critical tension minimally affects the peak response, (I), but considerably affects the time course of response, I(t), and the force-displacement, F-X, relationship; and 3), higher intracellular [Ca(2+)] resulted in a smaller fast adaptation time constant. Based on the simulation results we suggest a role of the resting tension: to help overcome the viscous drag of the hair bundle during the oscillatory movement of the bundle. Also we observed the three-dimensional bundle effect on the hair cell response by varying the number of cilia forced. These varying forcing conditions affected the hair cell response.

摘要

我们提出的虚拟毛细胞利用了一组与其机电转换相关的参数。在这项工作中,我们观察了诸如门控阈值、临界张力、静息张力和Ca(2+)浓度等通道门控参数的影响。门控阈值是纤毛顶端连接组件施加在通道上的静息张力与通道开放张力之间的差值。临界张力是纤毛顶端连接组件中的张力,超过该张力,即使Ca(2+)结合,通道也无法关闭。我们的结果表明:1)门控阈值主导了毛细胞的初始敏感性;2)临界张力对峰值响应(I)影响最小,但对响应的时间进程I(t)和力-位移F-X关系有相当大的影响;3)较高的细胞内[Ca(2+)]导致较小的快速适应时间常数。基于模拟结果,我们提出了静息张力的作用:在毛束的振荡运动过程中帮助克服毛束的粘性阻力。我们还通过改变受迫纤毛的数量观察了三维束对毛细胞响应的影响。这些不同的受迫条件影响了毛细胞的响应。

相似文献

1
A virtual hair cell, II: evaluation of mechanoelectric transduction parameters.
Biophys J. 2007 Mar 15;92(6):1929-37. doi: 10.1529/biophysj.106.085092. Epub 2007 Jan 5.
2
A virtual hair cell, I: addition of gating spring theory into a 3-D bundle mechanical model.
Biophys J. 2007 Mar 15;92(6):1918-28. doi: 10.1529/biophysj.106.085076. Epub 2007 Jan 5.
3
Two adaptation processes in auditory hair cells together can provide an active amplifier.
Biophys J. 2003 Jul;85(1):191-203. doi: 10.1016/S0006-3495(03)74465-8.
4
The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
Biophys J. 2008 Apr 1;94(7):2639-53. doi: 10.1529/biophysj.107.123257. Epub 2008 Jan 4.
5
Gating of two mechanoelectrical transducer channels associated with a single tip link.
Biophys J. 2010 Aug 9;99(4):1027-33. doi: 10.1016/j.bpj.2010.05.029.
6
Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7185-90. doi: 10.1073/pnas.1402556111. Epub 2014 May 5.
7
Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle.
Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1330-4. doi: 10.1073/pnas.90.4.1330.
9
Friction from Transduction Channels' Gating Affects Spontaneous Hair-Bundle Oscillations.
Biophys J. 2018 Jan 23;114(2):425-436. doi: 10.1016/j.bpj.2017.11.019.
10
The how and why of identifying the hair cell mechano-electrical transduction channel.
Pflugers Arch. 2015 Jan;467(1):73-84. doi: 10.1007/s00424-014-1606-z. Epub 2014 Sep 23.

引用本文的文献

1
Multiscale modeling of mechanotransduction in the utricle.
J Neurophysiol. 2019 Jul 1;122(1):132-150. doi: 10.1152/jn.00068.2019. Epub 2019 Apr 17.
2
An operating principle of the turtle utricle to detect wide dynamic range.
Hear Res. 2018 Mar;360:31-39. doi: 10.1016/j.heares.2017.09.015. Epub 2017 Oct 9.
3
Underestimated sensitivity of mammalian cochlear hair cells due to splay between stereociliary columns.
Biophys J. 2015 Jun 2;108(11):2633-47. doi: 10.1016/j.bpj.2015.04.028.
4
Utricular afferents: morphology of peripheral terminals.
J Neurophysiol. 2015 Apr 1;113(7):2420-33. doi: 10.1152/jn.00481.2014. Epub 2015 Jan 28.
5
Striola magica. A functional explanation of otolith geometry.
J Comput Neurosci. 2013 Oct;35(2):125-54. doi: 10.1007/s10827-013-0444-x. Epub 2013 Apr 16.
6
Quantifying utricular stimulation during natural behavior.
J Exp Zool A Ecol Genet Physiol. 2012 Dec;317(8):467-80. doi: 10.1002/jez.1739. Epub 2012 Jul 2.
7
Relative stereociliary motion in a hair bundle opposes amplification at distortion frequencies.
J Physiol. 2012 Jan 15;590(2):301-8. doi: 10.1113/jphysiol.2011.218362. Epub 2011 Nov 28.
8
Information analysis of posterior canal afferents in the turtle, Trachemys scripta elegans.
Brain Res. 2012 Jan 24;1434:226-42. doi: 10.1016/j.brainres.2011.08.016. Epub 2011 Aug 16.
9
Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels.
J Neurosci. 2010 Jul 7;30(27):9051-63. doi: 10.1523/JNEUROSCI.4864-09.2010.

本文引用的文献

1
Effect of fluid forcing on vestibular hair bundles.
J Vestib Res. 2005;15(5-6):263-78.
2
Mechanical properties and consequences of stereocilia and extracellular links in vestibular hair bundles.
Biophys J. 2006 Apr 15;90(8):2786-95. doi: 10.1529/biophysj.105.066027. Epub 2006 Jan 20.
3
Adaptive shift in the domain of negative stiffness during spontaneous oscillation by hair bundles from the internal ear.
Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16996-7001. doi: 10.1073/pnas.0508731102. Epub 2005 Nov 15.
4
Ca2+ changes the force sensitivity of the hair-cell transduction channel.
Biophys J. 2006 Jan 1;90(1):124-39. doi: 10.1529/biophysj.105.061226. Epub 2005 Oct 7.
5
Tonic mechanosensitivity of outer hair cells after loss of tip links.
Hear Res. 2005 Apr;202(1-2):97-113. doi: 10.1016/j.heares.2004.11.013.
6
Computational models of hair cell bundle mechanics: III. 3-D utricular bundles.
Hear Res. 2004 Nov;197(1-2):112-30. doi: 10.1016/j.heares.2004.06.006.
7
Myosin-1c, the hair cell's adaptation motor.
Annu Rev Physiol. 2004;66:521-45. doi: 10.1146/annurev.physiol.66.032102.112842.
8
Mechanosensitive channels: multiplicity of families and gating paradigms.
Sci STKE. 2004 Feb 3;2004(219):re4. doi: 10.1126/stke.2192004re4.
9
Channel gating forces govern accuracy of mechano-electrical transduction in hair cells.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15510-5. doi: 10.1073/pnas.2632626100. Epub 2003 Dec 10.
10
Two adaptation processes in auditory hair cells together can provide an active amplifier.
Biophys J. 2003 Jul;85(1):191-203. doi: 10.1016/S0006-3495(03)74465-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验