Suppr超能文献

神奇的条纹斑竹鲨。耳石几何结构的功能解释。

Striola magica. A functional explanation of otolith geometry.

作者信息

Dimiccoli Mariella, Girard Benoît, Berthoz Alain, Bennequin Daniel

机构信息

Laboratoire de Mathématiques Appliquées à Paris 5 (MAP5), Université Paris Descartes (Paris V), UMR 8145, Paris, France,

出版信息

J Comput Neurosci. 2013 Oct;35(2):125-54. doi: 10.1007/s10827-013-0444-x. Epub 2013 Apr 16.

Abstract

Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.

摘要

脊椎动物的耳石终器可感知头部的线性加速度和重力。其上皮组织上的毛细胞负责信号转换。在哺乳动物中,与毛细胞极化方向反转线平行的纹状区是一个以具有曲率和挠率的曲线为中心的狭窄区域。研究表明,纹状区在功能上与其他区域不同,参与了一个相位性前庭通路。我们提出了一个数学和计算模型,解释了纹状区拥有这种惊人几何结构以执行其功能的必要性。我们的假设与毛细胞的生物物理学及其传入神经元的生理学有关,即纹状区传入神经元从多个I型毛细胞收集信息,以检测大范围加速度方向上的加加速度。这预测传入神经元平均有两个杯状突触,这与在啮齿动物中测量的结果一致。考虑到所有传入神经元,我们的纹状区模型所感知的加速度方向域与在猴子身上获得的实验结果相符。因此,我们研究的主要结果是,相位性和紧张性前庭传入神经覆盖相同的几何场,但在不同的动态和频率域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验