Suppr超能文献

针对任意数量细节特征配置的指纹识别中似然比的计算。

Computation of likelihood ratios in fingerprint identification for configurations of any number of minutiae.

作者信息

Neumann Cédric, Champod Christophe, Puch-Solis Roberto, Egli Nicole, Anthonioz Alexandre, Bromage-Griffiths Andie

机构信息

The Forensic Science Service, Trident Court, 2920 Solihull Parkway, Birmingham Business Park, Birmingham B37 7YN, UK.

出版信息

J Forensic Sci. 2007 Jan;52(1):54-64. doi: 10.1111/j.1556-4029.2006.00327.x.

Abstract

Recent court challenges have highlighted the need for statistical research on fingerprint identification. This paper proposes a model for computing likelihood ratios (LRs) to assess the evidential value of comparisons with any number of minutiae. The model considers minutiae type, direction and relative spatial relationships. It expands on previous work on three minutiae by adopting a spatial modeling using radial triangulation and a probabilistic distortion model for assessing the numerator of the LR. The model has been tested on a sample of 686 ulnar loops and 204 arches. Features vectors used for statistical analysis have been obtained following a preprocessing step based on Gabor filtering and image processing to extract minutiae data. The metric used to assess similarity between two feature vectors is based on an Euclidean distance measure. Tippett plots and rates of misleading evidence have been used as performance indicators of the model. The model has shown encouraging behavior with low rates of misleading evidence and a LR power of the model increasing significantly with the number of minutiae. The LRs that it provides are highly indicative of identity of source on a significant proportion of cases, even when considering configurations with few minutiae. In contrast with previous research, the model, in addition to minutia type and direction, incorporates spatial relationships of minutiae without introducing probabilistic independence assumptions. The model also accounts for finger distortion.

摘要

近期的法庭质疑凸显了指纹识别统计研究的必要性。本文提出了一种用于计算似然比(LRs)的模型,以评估与任意数量细节特征进行比对时的证据价值。该模型考虑了细节特征类型、方向和相对空间关系。它通过采用基于径向三角测量的空间建模和用于评估似然比分子的概率失真模型,对之前关于三个细节特征的工作进行了扩展。该模型已在686个尺侧箕形纹和204个弓形纹样本上进行了测试。在基于Gabor滤波和图像处理的预处理步骤之后,获取了用于统计分析的特征向量,以提取细节特征数据。用于评估两个特征向量之间相似度的度量基于欧几里得距离测量。蒂皮特图和误导性证据发生率已被用作该模型的性能指标。该模型表现出令人鼓舞的结果,误导性证据发生率较低,并且模型的似然比能力随着细节特征数量的增加而显著提高。即使在考虑细节特征较少的配置时,它提供的似然比在很大比例的案例中也高度指示了来源的同一性。与之前的研究相比,该模型除了考虑细节特征类型和方向外,还纳入了细节特征的空间关系,而无需引入概率独立性假设。该模型还考虑了手指变形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验