Fronthaler Hartwig, Kollreider Klaus, Bigun Josef
Halmstad University, SE-30118, Halmstad, Sweden.
IEEE Trans Image Process. 2008 Mar;17(3):354-63. doi: 10.1109/TIP.2007.916155.
Accurate fingerprint recognition presupposes robust feature extraction which is often hampered by noisy input data. We suggest common techniques for both enhancement and minutiae extraction, employing symmetry features. For enhancement, a Laplacian-like image pyramid is used to decompose the original fingerprint into sub-bands corresponding to different spatial scales. In a further step, contextual smoothing is performed on these pyramid levels, where the corresponding filtering directions stem from the frequency-adapted structure tensor (linear symmetry features). For minutiae extraction, parabolic symmetry is added to the local fingerprint model which allows to accurately detect the position and direction of a minutia simultaneously. Our experiments support the view that using the suggested parabolic symmetry features, the extraction of which does not require explicit thinning or other morphological operations, constitute a robust alternative to conventional minutiae extraction. All necessary image processing is done in the spatial domain using 1-D filters only, avoiding block artifacts that reduce the biometric information. We present comparisons to other studies on enhancement in matching tasks employing the open source matcher from NIST, FIS2. Furthermore, we compare the proposed minutiae extraction method with the corresponding method from the NIST package, mindtct. A top five commercial matcher from FVC2006 is used in enhancement quantification as well. The matching error is lowered significantly when plugging in the suggested methods. The FVC2004 fingerprint database, notable for its exceptionally low-quality fingerprints, is used for all experiments.
准确的指纹识别预先假定了强大的特征提取,而这常常受到噪声输入数据的阻碍。我们提出了利用对称特征进行增强和细节提取的通用技术。对于增强,使用类似拉普拉斯的图像金字塔将原始指纹分解为对应不同空间尺度的子带。在进一步的步骤中,对这些金字塔层级执行上下文平滑,其中相应的滤波方向源自频率自适应结构张量(线性对称特征)。对于细节提取,将抛物线对称添加到局部指纹模型中,这允许同时准确检测细节点的位置和方向。我们的实验支持这样一种观点,即使用所建议的抛物线对称特征(其提取不需要显式细化或其他形态学操作)构成了传统细节提取的一种强大替代方法。所有必要的图像处理仅在空间域中使用一维滤波器完成,避免了降低生物特征信息的块伪影。我们使用来自美国国家标准与技术研究院(NIST)的开源匹配器FIS2,与其他关于匹配任务中增强的研究进行比较。此外,我们将所提出的细节提取方法与NIST软件包中的相应方法mindtct进行比较。在增强量化中还使用了来自FVC2006的顶级商业匹配器。当插入所建议的方法时,匹配误差显著降低。所有实验均使用以其极低质量指纹而闻名的FVC2004指纹数据库。