Fiala Kevin A, Hypes Cameron D, Suo Zucai
Department of Biochemistry, the Ohio State Biochemistry Program, the Comprehensive Cancer Center, Ohio State University, Columbus 43210, USA.
J Biol Chem. 2007 Mar 16;282(11):8188-98. doi: 10.1074/jbc.M610718200. Epub 2007 Jan 8.
The 3 million-base pair genome of Sulfolobus solfataricus likely undergoes depurination/depyrimidination frequently in vivo. These unrepaired abasic lesions are expected to be bypassed by Dpo4, the only Y-family DNA polymerase from S. solfataricus. Interestingly, these error-prone Y-family enzymes have been shown to be physiologically vital in reducing the potentially negative consequences of DNA damage while paradoxically promoting carcinogenesis. Here we used Dpo4 as a model Y-family polymerase to establish the mechanistic basis for DNA lesion bypass. While showing efficient bypass, Dpo4 paused when incorporating nucleotides directly opposite and one position downstream from an abasic lesion because of a drop of several orders of magnitude in catalytic efficiency. Moreover, in disagreement with a previous structural report, Dpo4-catalyzed abasic bypass involves robust competition between the A-rule and the lesion loop-out mechanism and is governed by the local DNA sequence. Analysis of the strong pause sites revealed biphasic kinetics for incorporation indicating that Dpo4 primarily formed a nonproductive complex with DNA that converted slowly to a productive complex. These strong pause sites are mutational hot spots with the embedded lesion even affecting the efficiency of five to six downstream incorporations. Our results suggest that abasic lesion bypass requires tight regulation to maintain genomic stability.
嗜热栖热菌(Sulfolobus solfataricus)的300万个碱基对的基因组在体内可能经常发生脱嘌呤/脱嘧啶作用。这些未修复的无碱基损伤预计会被Dpo4绕过,Dpo4是嗜热栖热菌中唯一的Y家族DNA聚合酶。有趣的是,这些易出错的Y家族酶已被证明在减少DNA损伤的潜在负面后果方面具有生理重要性,同时却反常地促进了癌症发生。在这里,我们使用Dpo4作为Y家族聚合酶的模型来建立DNA损伤绕过的机制基础。虽然Dpo4显示出高效的绕过能力,但在将核苷酸掺入无碱基损伤正对面以及损伤下游一个位置时会暂停,因为催化效率下降了几个数量级。此外,与之前的结构报告不同,Dpo4催化的无碱基绕过涉及A规则与损伤环出机制之间的激烈竞争,并受局部DNA序列的控制。对强暂停位点的分析揭示了掺入的双相动力学,表明Dpo4主要与DNA形成非生产性复合物,该复合物缓慢转化为生产性复合物。这些强暂停位点是突变热点,其中嵌入的损伤甚至会影响下游五到六个掺入的效率。我们的结果表明,无碱基损伤绕过需要严格调控以维持基因组稳定性。