Suppr超能文献

Bidirectional regulation of upstream IGF-I/insulin receptor signaling and downstream FOXO1 in cardiomyocytes.

作者信息

Liu Tsun-Jui, Lai Hui-Chin, Ting Chih-Tai, Wang Ping H

机构信息

Department of Medicine, Biological Chemistry, Physiology and Biophysics, Center for Diabetes Research and Treatment, University of California, Irvine, CA 92697, USA.

出版信息

J Endocrinol. 2007 Jan;192(1):149-58. doi: 10.1677/joe.1.07020.

Abstract

Signaling pathways of IGF-I and insulin receptors play important roles in the regulation of myocardial function. FOXO1 is a member of the forkhead transcriptional factor family, but how insulin and IGF-I receptor signaling regulate FOXO1 in cardiomyocytes is not well understood. This study was carried out to elucidate how IGF-I and insulin receptor signaling modulate FOXO1 in cardiomyocytes. In cardiomyocytes, activation of IGF-I receptor and insulin receptor lead to rapid phosphorylation of FOXO1. Inhibition of phosphatidylinositol 3-kinase/Akt pathway suppressed the effect of insulin and IGF-I on FOXO1 phosphorylation. Prolonged incubation with IGF-I increased ubiquitination of FOXO1 and down-regulated the abundance of FOXO1 proteins, which suggested that IGF-I might modulate FOXO1 degradation. To explore whether FOXO1 could modulate IGF-I and insulin signaling, a constitutively active FOXO1 was overexpressed in cardiomyocytes. The abundance of insulin receptor and IGF-I receptor was significantly upregulated in the cells overexpressing active FOXO1, accompanied by increased receptor phosphorylation upon insulin/IGF-I stimulation. Interestingly, overexpression of constitutively active FOXO1 also led to activation of MEK and Akt phosphorylation. IGF-I-stimulated MEK and Akt phosphorylation were augmented byoverexpression of constitutively active FOXO1. These findings indicate bidirectional regulation of insulin/IGF-I receptor signaling and FOXO1 in cardiomyocytes. FOXO1 may provide feedback control through upregulation of insulin and IGF-I receptor signaling.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验