Suppr超能文献

第1部分. 脑肿瘤患者系列磁共振成像研究中的自动变化检测与特征分析

Part 1. Automated change detection and characterization in serial MR studies of brain-tumor patients.

作者信息

Patriarche Julia Willamena, Erickson Bradley James

机构信息

Department of Radiology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.

出版信息

J Digit Imaging. 2007 Sep;20(3):203-22. doi: 10.1007/s10278-006-1038-1.

Abstract

The goal of this study was to create an algorithm which would quantitatively compare serial magnetic resonance imaging studies of brain-tumor patients. A novel algorithm and a standard classify-subtract algorithm were constructed. The ability of both algorithms to detect and characterize changes was compared using a series of digital phantoms. The novel algorithm achieved a mean sensitivity of 0.87 (compared with 0.59 for classify-subtract) and a mean specificity of 0.98 (compared with 0.92 for classify-subtract) with regard to identification of voxels as changing or unchanging and classification of voxels into types of change. The novel algorithm achieved perfect specificity in seven of the nine experiments. The novel algorithm was additionally applied to a short series of clinical cases, where it was shown to identify visually subtle changes. Automated change detection and characterization could facilitate objective review and understanding of serial magnetic resonance imaging studies in brain-tumor patients.

摘要

本研究的目的是创建一种算法,用于对脑肿瘤患者的系列磁共振成像研究进行定量比较。构建了一种新型算法和一种标准的分类减法算法。使用一系列数字模型比较了两种算法检测和表征变化的能力。在确定体素是否发生变化以及将体素分类为变化类型方面,新型算法的平均灵敏度达到0.87(分类减法算法为0.59),平均特异性达到0.98(分类减法算法为0.92)。在九个实验中的七个实验中,新型算法实现了完美的特异性。新型算法还被应用于一小系列临床病例,结果表明它能够识别视觉上细微的变化。自动变化检测和表征有助于对脑肿瘤患者的系列磁共振成像研究进行客观的评估和理解。

相似文献

3
Cellular automata segmentation of brain tumors on post contrast MR images.基于增强后磁共振图像的脑肿瘤细胞自动机分割
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):137-46. doi: 10.1007/978-3-642-15711-0_18.

引用本文的文献

5
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
10
DEWEY: the DICOM-enabled workflow engine system.杜威:支持DICOM的工作流引擎系统。
J Digit Imaging. 2014 Jun;27(3):309-13. doi: 10.1007/s10278-013-9661-0.

本文引用的文献

1
Indexed Pain Journals.索引疼痛期刊。
J Pain Palliat Care Pharmacother. 2008;22(1):45-46. doi: 10.1080/15360280801989377.
2
Change blindness.变化盲视。
Trends Cogn Sci. 1997 Oct;1(7):261-7. doi: 10.1016/S1364-6613(97)01080-2.
4
Optimal linear transformation for MRI feature extraction.MRI 特征提取的最优线性变换。
IEEE Trans Med Imaging. 1996;15(6):749-67. doi: 10.1109/42.544494.
5
Image change detection algorithms: a systematic survey.图像变化检测算法:系统综述。
IEEE Trans Image Process. 2005 Mar;14(3):294-307. doi: 10.1109/tip.2004.838698.
9
10
Change detection.变化检测
Annu Rev Psychol. 2002;53:245-77. doi: 10.1146/annurev.psych.53.100901.135125.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验