Schwarz Alex, Gaete María, Nancucheo Iván, Villa-Gomez Denys, Aybar Marcelo, Sbárbaro Daniel
Civil Engineering Department, Universidad de Concepción, Concepción, Chile.
Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile.
Front Bioeng Biotechnol. 2022 Mar 7;10:805712. doi: 10.3389/fbioe.2022.805712. eCollection 2022.
It is anticipated that copper mining output will significantly increase over the next 20 years because of the more intensive use of copper in electricity-related technologies such as for transport and clean power generation, leading to a significant increase in the impacts on water resources if stricter regulations and as a result cleaner mining and processing technologies are not implemented. A key concern of discarded copper production process water is sulfate. In this study we aim to transform sulfate into sulfur in real mining process water. For that, we operate a sequential 2-step membrane biofilm reactor (MBfR) system. We coupled a hydrogenotrophic MBfR (H-MBfR) for sulfate reduction to an oxidizing MBfR (O-MBfR) for oxidation of sulfide to elemental sulfur. A key process improvement of the H-MBfR was online pH control, which led to stable high-rate sulfate removal not limited by biomass accumulation and with H supply that was on demand. The H-MBfR easily adapted to increasing sulfate loads, but the O-MBfR was difficult to adjust to the varying H-MBfR outputs, requiring better coupling control. The H-MBfR achieved high average volumetric sulfate reduction performances of 1.7-3.74 g S/m-d at 92-97% efficiencies, comparable to current high-rate technologies, but without requiring gas recycling and recompression and by minimizing the H off-gassing risk. On the other hand, the O-MBfR reached average volumetric sulfur production rates of 0.7-2.66 g S/m-d at efficiencies of 48-78%. The O-MBfR needs further optimization by automatizing the gas feed, evaluating the controlled removal of excess biomass and S particles accumulating in the biofilm, and achieving better coupling control between both reactors. Finally, an economic/sustainability evaluation shows that MBfR technology can benefit from the green production of H and O at operating costs which compare favorably with membrane filtration, without generating residual streams, and with the recovery of valuable elemental sulfur.
预计未来20年铜矿业产量将大幅增长,这是因为铜在运输和清洁能源发电等与电力相关的技术中使用更为密集。如果不实施更严格的法规以及更清洁的采矿和加工技术,这将导致对水资源的影响显著增加。废弃铜生产工艺用水的一个关键问题是硫酸盐。在本研究中,我们旨在将实际采矿工艺水中的硫酸盐转化为硫。为此,我们运行了一个连续两步的膜生物膜反应器(MBfR)系统。我们将用于硫酸盐还原的氢营养型MBfR(H-MBfR)与用于将硫化物氧化为元素硫的氧化型MBfR(O-MBfR)耦合。H-MBfR的一个关键工艺改进是在线pH控制,这导致了稳定的高速率硫酸盐去除,不受生物量积累的限制,并且氢气供应按需进行。H-MBfR很容易适应不断增加的硫酸盐负荷,但O-MBfR难以适应H-MBfR输出的变化,需要更好的耦合控制。H-MBfR在92-97%的效率下实现了1.7-3.74 g S/m³·d的高平均容积硫酸盐还原性能,与当前的高速率技术相当,但无需气体循环和再压缩,并将氢气排放风险降至最低。另一方面,O-MBfR在48-78%的效率下达到了0.7-2.66 g S/m³·d的平均容积硫生产率。O-MBfR需要通过自动控制气体进料、评估生物膜中积累的过量生物量和硫颗粒的受控去除以及实现两个反应器之间更好的耦合控制来进一步优化。最后,经济/可持续性评估表明,MBfR技术可以受益于氢气和氧气的绿色生产,其运营成本与膜过滤相比具有优势,不会产生残余物流,并能回收有价值的元素硫。