Yin Longde, Huang Chun-Hsi, Ni Jun
Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA.
BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S19. doi: 10.1186/1471-2105-7-S4-S19.
DNA Microarray technology is an innovative methodology in experimental molecular biology, which has produced huge amounts of valuable data in the profile of gene expression. Many clustering algorithms have been proposed to analyze gene expression data, but little guidance is available to help choose among them. The evaluation of feasible and applicable clustering algorithms is becoming an important issue in today's bioinformatics research.
In this paper we first experimentally study three major clustering algorithms: Hierarchical Clustering (HC), Self-Organizing Map (SOM), and Self Organizing Tree Algorithm (SOTA) using Yeast Saccharomyces cerevisiae gene expression data, and compare their performance. We then introduce Cluster Diff, a new data mining tool, to conduct the similarity analysis of clusters generated by different algorithms. The performance study shows that SOTA is more efficient than SOM while HC is the least efficient. The results of similarity analysis show that when given a target cluster, the Cluster Diff can efficiently determine the closest match from a set of clusters. Therefore, it is an effective approach for evaluating different clustering algorithms.
HC methods allow a visual, convenient representation of genes. However, they are neither robust nor efficient. The SOM is more robust against noise. A disadvantage of SOM is that the number of clusters has to be fixed beforehand. The SOTA combines the advantages of both hierarchical and SOM clustering. It allows a visual representation of the clusters and their structure and is not sensitive to noises. The SOTA is also more flexible than the other two clustering methods. By using our data mining tool, Cluster Diff, it is possible to analyze the similarity of clusters generated by different algorithms and thereby enable comparisons of different clustering methods.
DNA微阵列技术是实验分子生物学中的一种创新方法,它在基因表达谱方面产生了大量有价值的数据。已经提出了许多聚类算法来分析基因表达数据,但在如何从中进行选择方面几乎没有可用的指导。评估可行且适用的聚类算法正成为当今生物信息学研究中的一个重要问题。
在本文中,我们首先使用酿酒酵母基因表达数据对三种主要聚类算法进行了实验研究:层次聚类(HC)、自组织映射(SOM)和自组织树算法(SOTA),并比较了它们的性能。然后,我们引入了一种新的数据挖掘工具Cluster Diff,以对不同算法生成的聚类进行相似性分析。性能研究表明,SOTA比SOM更高效,而HC效率最低。相似性分析结果表明,当给定一个目标聚类时,Cluster Diff可以有效地从一组聚类中确定最接近的匹配。因此,它是评估不同聚类算法的一种有效方法。
HC方法能够以直观、便捷的方式呈现基因。然而,它们既不稳健也不高效。SOM对噪声更具鲁棒性。SOM的一个缺点是聚类数量必须预先确定。SOTA结合了层次聚类和SOM聚类的优点。它能够直观地呈现聚类及其结构,并且对噪声不敏感。SOTA也比其他两种聚类方法更灵活。通过使用我们的数据挖掘工具Cluster Diff,可以分析不同算法生成的聚类的相似性,从而对不同聚类方法进行比较。