Suppr超能文献

利用模糊最近邻聚类方法从基因表达数据中进行系统的基因功能预测。

Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method.

作者信息

Li Xiao-Li, Tan Yin-Chet, Ng See-Kiong

机构信息

Knowledge Discovery Department, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore.

出版信息

BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S23. doi: 10.1186/1471-2105-7-S4-S23.

Abstract

BACKGROUND

Quantitative simultaneous monitoring of the expression levels of thousands of genes under various experimental conditions is now possible using microarray experiments. However, there are still gaps toward whole-genome functional annotation of genes using the gene expression data.

RESULTS

In this paper, we propose a novel technique called Fuzzy Nearest Clusters for genome-wide functional annotation of unclassified genes. The technique consists of two steps: an initial hierarchical clustering step to detect homogeneous co-expressed gene subgroups or clusters in each possibly heterogeneous functional class; followed by a classification step to predict the functional roles of the unclassified genes based on their corresponding similarities to the detected functional clusters.

CONCLUSION

Our experimental results with yeast gene expression data showed that the proposed method can accurately predict the genes' functions, even those with multiple functional roles, and the prediction performance is most independent of the underlying heterogeneity of the complex functional classes, as compared to the other conventional gene function prediction approaches.

摘要

背景

利用微阵列实验现在可以在各种实验条件下对数千个基因的表达水平进行定量同步监测。然而,使用基因表达数据对基因进行全基因组功能注释仍存在差距。

结果

在本文中,我们提出了一种名为模糊最近聚类的新技术,用于对未分类基因进行全基因组功能注释。该技术包括两个步骤:初始层次聚类步骤,以在每个可能异质的功能类别中检测同质共表达基因亚组或聚类;随后是分类步骤,根据未分类基因与检测到的功能聚类的相应相似性来预测其功能作用。

结论

我们对酵母基因表达数据的实验结果表明,与其他传统基因功能预测方法相比,所提出的方法可以准确预测基因的功能,即使是具有多种功能作用的基因,并且预测性能最不受复杂功能类别的潜在异质性影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8db/1780124/a8e50ebe8b55/1471-2105-7-S4-S23-1.jpg

相似文献

1
Systematic gene function prediction from gene expression data by using a fuzzy nearest-cluster method.
BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S23. doi: 10.1186/1471-2105-7-S4-S23.
2
Detecting clusters of different geometrical shapes in microarray gene expression data.
Bioinformatics. 2005 May 1;21(9):1927-34. doi: 10.1093/bioinformatics/bti251. Epub 2005 Jan 12.
3
Fuzzy clustering analysis of microarray data.
Proc Inst Mech Eng H. 2008 Oct;222(7):1143-8. doi: 10.1243/09544119JEIM384.
4
An effective fuzzy kernel clustering analysis approach for gene expression data.
Biomed Mater Eng. 2015;26 Suppl 1:S1863-9. doi: 10.3233/BME-151489.
5
Network constrained clustering for gene microarray data.
Bioinformatics. 2005 Nov 1;21(21):4014-20. doi: 10.1093/bioinformatics/bti655. Epub 2005 Sep 1.
6
Hierarchical tree snipping: clustering guided by prior knowledge.
Bioinformatics. 2007 Dec 15;23(24):3335-42. doi: 10.1093/bioinformatics/btm526. Epub 2007 Nov 7.
8
Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data.
Bioinformatics. 2006 May 15;22(10):1259-68. doi: 10.1093/bioinformatics/btl065. Epub 2006 Feb 24.
9
A mixture model with random-effects components for clustering correlated gene-expression profiles.
Bioinformatics. 2006 Jul 15;22(14):1745-52. doi: 10.1093/bioinformatics/btl165. Epub 2006 May 3.
10
Context-dependent clustering for dynamic cellular state modeling of microarray gene expression.
Bioinformatics. 2007 Nov 15;23(22):3039-47. doi: 10.1093/bioinformatics/btm457. Epub 2007 Sep 10.

引用本文的文献

1
Gene Ontology Capsule GAN: an improved architecture for protein function prediction.
PeerJ Comput Sci. 2022 Aug 15;8:e1014. doi: 10.7717/peerj-cs.1014. eCollection 2022.
3
BiCAMWI: A Genetic-Based Biclustering Algorithm for Detecting Dynamic Protein Complexes.
PLoS One. 2016 Jul 27;11(7):e0159923. doi: 10.1371/journal.pone.0159923. eCollection 2016.
5
A survey of computational intelligence techniques in protein function prediction.
Int J Proteomics. 2014;2014:845479. doi: 10.1155/2014/845479. Epub 2014 Dec 11.
6
Detecting temporal protein complexes from dynamic protein-protein interaction networks.
BMC Bioinformatics. 2014 Oct 4;15(1):335. doi: 10.1186/1471-2105-15-335.
7
Protein complex identification by integrating protein-protein interaction evidence from multiple sources.
PLoS One. 2013 Dec 27;8(12):e83841. doi: 10.1371/journal.pone.0083841. eCollection 2013.
9
Computational approaches for detecting protein complexes from protein interaction networks: a survey.
BMC Genomics. 2010 Feb 10;11 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2164-11-S1-S3.
10
Extending bicluster analysis to annotate unclassified ORFs and predict novel functional modules using expression data.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S20. doi: 10.1186/1471-2164-9-S2-S20.

本文引用的文献

1
MIPS: analysis and annotation of proteins from whole genomes in 2005.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D169-72. doi: 10.1093/nar/gkj148.
2
Detecting clusters of different geometrical shapes in microarray gene expression data.
Bioinformatics. 2005 May 1;21(9):1927-34. doi: 10.1093/bioinformatics/bti251. Epub 2005 Jan 12.
3
Predicting gene function in Saccharomyces cerevisiae.
Bioinformatics. 2003 Oct;19 Suppl 2:ii42-9. doi: 10.1093/bioinformatics/btg1058.
4
CLICK and EXPANDER: a system for clustering and visualizing gene expression data.
Bioinformatics. 2003 Sep 22;19(14):1787-99. doi: 10.1093/bioinformatics/btg232.
5
Diametrical clustering for identifying anti-correlated gene clusters.
Bioinformatics. 2003 Sep 1;19(13):1612-9. doi: 10.1093/bioinformatics/btg209.
6
Novel clustering algorithm for microarray expression data in a truncated SVD space.
Bioinformatics. 2003 Jun 12;19(9):1110-5. doi: 10.1093/bioinformatics/btg053.
7
Bagging to improve the accuracy of a clustering procedure.
Bioinformatics. 2003 Jun 12;19(9):1090-9. doi: 10.1093/bioinformatics/btg038.
8
Fuzzy C-means method for clustering microarray data.
Bioinformatics. 2003 May 22;19(8):973-80. doi: 10.1093/bioinformatics/btg119.
10
The mutual information: detecting and evaluating dependencies between variables.
Bioinformatics. 2002;18 Suppl 2:S231-40. doi: 10.1093/bioinformatics/18.suppl_2.s231.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验