Fudge Barry W, Wilson John, Easton Chris, Irwin Laura, Clark Jonathan, Haddow Olivia, Kayser Bengt, Pitsiladis Yannis P
International Centre for East African Running Science and Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow, UK.
Med Sci Sports Exerc. 2007 Jan;39(1):192-8. doi: 10.1249/01.mss.0000235884.71487.21.
Previous investigations have reported that accelerometer counts plateau during running at increasingly faster speeds.
To assess whether biomechanical and/or device limitations cause this phenomenon and the feasibility of generating oxygen uptake (.VO2) prediction equations from the combined use of accelerometry and heart rate during walking and running.
: Sixteen endurance-trained subjects completed two exercise tests on a treadmill. The first was a continuous incremental test to volitional exhaustion to determine ventilatory threshold and peak .VO2. The second was a discontinuous incremental exercise test while walking (3, 5, and 7 km.h(-1)) and running (8, 10, 12, 14, 16, 18, and 20 km.h(-1), or until volitional exhaustion). Subjects completed 3 min of exercise at each speed, followed by 3-5 min of recovery. Activity counts from uni- and triaxial accelerometers, heart rate, and gas exchange were measured throughout exercise.
All accelerometer outputs rose linearly with speed during walking. During running, uniaxial accelerometer outputs plateaued, whereas triaxial output rose linearly with speed up to and including 20 km.h(-1). Prediction of .VO2 during walking and running using heart rate (R2 = 0.42 and 0.59, respectively), accelerometer counts (R2 = 0.48-0.83 and 0.76, respectively), the combined methodologies (R2 = 0.54-0.85 and 0.80, respectively), and the combined methodologies calibrated with individual data (R2 = 0.99-1.00 and 0.99, respectively) was completed by linear regression.
Uni- and triaxial accelerometer outputs have a linear relationship with speed during walking. During running, uniaxial accelerometer outputs plateau because of the biomechanics of running, whereas triaxial accelerometer output has a linear relationship. The combined methodologies predict .VO2 better than either predictor alone; a subject's individually calibrated data further improves .VO2 estimation.
先前的研究报告称,在跑步速度越来越快时,加速度计计数会趋于平稳。
评估生物力学和/或设备限制是否导致了这种现象,以及在步行和跑步过程中联合使用加速度计和心率来生成摄氧量(.VO2)预测方程的可行性。
16名耐力训练受试者在跑步机上完成了两项运动测试。第一项是持续递增测试直至自愿疲劳,以确定通气阈值和峰值.VO2。第二项是在步行(3、5和7 km·h⁻¹)和跑步(8、10、12、14、16、18和20 km·h⁻¹,或直至自愿疲劳)时进行的间断递增运动测试。受试者在每个速度下完成3分钟运动,随后进行3 - 5分钟恢复。在整个运动过程中测量单轴和三轴加速度计的活动计数、心率和气体交换。
步行期间,所有加速度计输出均随速度呈线性增加。跑步期间,单轴加速度计输出趋于平稳,而三轴输出在速度达到并包括20 km·h⁻¹时随速度呈线性增加。使用心率(分别为R² = 0.42和0.59)、加速度计计数(分别为R² = 0.48 - 0.83和0.76)、联合方法(分别为R² = 0.54 - 0.85和0.80)以及用个体数据校准的联合方法(分别为R² = 0.99 - 1.00和0.99)对步行和跑步期间的.VO2进行预测,通过线性回归完成。
步行期间,单轴和三轴加速度计输出与速度呈线性关系。跑步期间,由于跑步的生物力学原因,单轴加速度计输出趋于平稳,而三轴加速度计输出呈线性关系。联合方法预测.VO2比单独使用任何一种预测器都更好;受试者的个体校准数据进一步改善了.VO2估计。