Zeng Zhongqing, Yin Yongyi, Jan Kung-Ming, Rumschitzki David S
Department of Chemical Engineering, City College of the City University of New York, NY 10031, USA.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2671-86. doi: 10.1152/ajpheart.00608.2006. Epub 2007 Jan 12.
This paper proposes a new, two-dimensional convection-diffusion model for macromolecular transport in heart valves based on horseradish peroxidase (HRP) experiments on rats presented in the first of the papers in this series (Part I; Zeng Z, Yin Y, Huang AL, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 292: H2664-H2670, 2007). Experiments require two valvular intimae, one underneath each endothelium. Tompkins et al. (Tompkins RG, Schnitzer JJ, Yarmush ML. Circ Res 64: 1213-1223, 1989) found large variations in shape and magnitude in transvalvular (125)I-labeled low-density lipoprotein (LDL) profiles from identical experiments on four squirrel monkeys. Their one-dimensional, uniform-medium diffusion-only model fit three parameters independently for each profile; data variability resulted in large parameter spreads. Our theory aims to explain their data with one parameter set. It uses measured parameters and some aortic values but fits the endothelial mass transfer coefficient (k(a)=k(v)=1.63 x 10(-8) cm/s, where subscripts a and v indicate aortic aspect and ventricular aspect, respectively) and middle layer permeability (K(p(2))=2.28 x 10(-16)cm(2)) and LDL diffusion coefficient [D(2)(LDL)=5.93 x 10(-9) cm(2)/s], using one of Tompkins et al.'s profiles, and fixes them throughout. It accurately predicts Part I's rapid localized HRP leakage spot growth rate in rat leaflets that results from the intima's much sparser structure, dictating its far larger transport parameters [K(p(1))= 1.10 x 10(-12)cm(2), D(1)(LDL/HRP)=1.02/4.09 x 10(-7)cm(2)/s] than the middle layer. This contrasts with large arteries with similarly large HRP spots, since the valve has no internal elastic lamina. The model quantitatively explains all of Tompkins et al.'s monkey profiles with these same parameters. Different numbers and locations of isolated macromolecular leaks on both aspects and different section-leak(s) distances yield all profiles.
本文基于本系列第一篇论文(第一部分;曾Z、尹Y、黄AL、简KM、伦施茨基DS。《美国生理学杂志:心脏和循环生理学》292:H2664 - H2670,2007)中对大鼠进行的辣根过氧化物酶(HRP)实验,提出了一种新的二维对流扩散模型,用于心脏瓣膜中的大分子传输。实验需要两个瓣膜内膜,每个内皮下方各一个。汤普金斯等人(汤普金斯RG、施尼策JJ、亚穆什ML。《循环研究》64:1213 - 1223,1989)发现在对四只松鼠猴进行的相同实验中,经瓣膜的(125)I标记低密度脂蛋白(LDL)分布在形状和大小上存在很大差异。他们的一维、均匀介质仅扩散模型对每个分布独立拟合三个参数;数据的变异性导致参数分布范围很大。我们的理论旨在用一组参数来解释他们的数据。它使用测量参数和一些主动脉值,但通过使用汤普金斯等人的一个分布来拟合内皮传质系数(k(a)=k(v)=1.63×10(-8) cm/s,其中下标a和v分别表示主动脉侧和心室侧)、中层渗透率(K(p(2))=2.28×10(-16)cm(2))和LDL扩散系数[D(2)(LDL)=5.93×10(-9) cm(2)/s],并在整个过程中固定这些参数。它准确地预测了第一部分中大鼠小叶中HRP快速局部渗漏点的生长速率,该生长速率是由内膜稀疏得多的结构导致的,这决定了其传输参数[K(p(1))= 1.10×10(-12)cm(2),D(1)(LDL/HRP)=1.02/4.09×10(-7)cm(2)/s]比中层大得多。这与具有类似大HRP斑点的大动脉形成对比,因为瓣膜没有内弹性膜。该模型用这些相同的参数定量地解释了汤普金斯等人的所有猴子分布。两侧分离的大分子渗漏的不同数量和位置以及不同的截面 - 渗漏距离产生了所有分布。