Suppr超能文献

双质子化肽前体高效电子转移解离的补充活化方法。

Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors.

作者信息

Swaney Danielle L, McAlister Graeme C, Wirtala Matthew, Schwartz Jae C, Syka John E P, Coon Joshua J

机构信息

Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Anal Chem. 2007 Jan 15;79(2):477-85. doi: 10.1021/ac061457f.

Abstract

Electron-transfer dissociation (ETD) delivers the unique attributes of electron capture dissociation to mass spectrometers that utilize radio frequency trapping-type devices (e.g., quadrupole ion traps). The method has generated significant interest because of its compatibility with chromatography and its ability to: (1) preserve traditionally labile post-translational modifications (PTMs) and (2) randomly cleave the backbone bonds of highly charged peptide and protein precursor ions. ETD, however, has shown limited applicability to doubly protonated peptide precursors, [M + 2H]2+, the charge and type of peptide most frequently encountered in "bottom-up" proteomics. Here we describe a supplemental collisional activation (CAD) method that targets the nondissociated (intact) electron-transfer (ET) product species ([M + 2H]+) to improve ETD efficiency for doubly protonated peptides (ETcaD). A systematic study of supplementary activation conditions revealed that low-energy CAD of the ET product population leads to the near-exclusive generation of c- and z-type fragment ions with relatively high efficiency (77 +/- 8%). Compared to those formed directly via ETD, the fragment ions were found to comprise increased relative amounts of the odd-electron c-type ions (c+) and the even-electron z-type ions (z+). A large-scale analysis of 755 doubly charged tryptic peptides was conducted to compare the method (ETcaD) to ion trap CAD and ETD. ETcaD produced a median sequence coverage of 89%-a significant improvement over ETD (63%) and ion trap CAD (77%).

摘要

电子转移解离(ETD)将电子捕获解离的独特特性引入到使用射频阱式装置(如四极杆离子阱)的质谱仪中。该方法因其与色谱的兼容性以及具备以下能力而引发了广泛关注:(1)保留传统上不稳定的翻译后修饰(PTM);(2)随机裂解高电荷肽和蛋白质前体离子的主链键。然而,ETD对双质子化肽前体[M + 2H]²⁺的适用性有限,而[M + 2H]²⁺是“自下而上”蛋白质组学中最常遇到的肽电荷和类型。在此,我们描述了一种补充性碰撞激活(CAD)方法,该方法针对未解离的(完整的)电子转移(ET)产物物种([M + 2H]⁺),以提高双质子化肽的ETD效率(ETcaD)。对补充激活条件的系统研究表明,ET产物群体的低能量CAD导致以相对较高的效率(77±8%)几乎排他性地生成c型和z型碎片离子。与直接通过ETD形成的碎片离子相比,发现这些碎片离子包含相对含量增加的奇电子c型离子(c⁺)和偶电子z型离子(z⁺)。对755个双电荷胰蛋白酶肽进行了大规模分析,以将该方法(ETcaD)与离子阱CAD和ETD进行比较。ETcaD产生的中位序列覆盖率为89%,相较于ETD(63%)和离子阱CAD(77%)有显著提高。

相似文献

2
Performance characteristics of electron transfer dissociation mass spectrometry.
Mol Cell Proteomics. 2007 Nov;6(11):1942-51. doi: 10.1074/mcp.M700073-MCP200. Epub 2007 Aug 1.
3
Effects of electron-transfer coupled with collision-induced dissociation (ET/CID) on doubly charged peptides and phosphopeptides.
J Am Soc Mass Spectrom. 2011 Jan;22(1):57-66. doi: 10.1007/s13361-010-0020-9. Epub 2011 Jan 27.
4
Electron transfer dissociation of iTRAQ labeled peptide ions.
J Proteome Res. 2008 Sep;7(9):3643-8. doi: 10.1021/pr8001113. Epub 2008 Jul 23.
9
Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics.
J Am Soc Mass Spectrom. 2022 Jan 5;33(1):100-110. doi: 10.1021/jasms.1c00284. Epub 2021 Dec 7.

引用本文的文献

1
Efficient, Zero Scrambling Fragmentation of Deuterium Labeled Peptides on the ZenoToF 7600 Electron Activated Dissociation Platform.
J Am Soc Mass Spectrom. 2025 May 7;36(5):1175-1181. doi: 10.1021/jasms.5c00041. Epub 2025 Apr 15.
2
How to Deal With Internal Fragment Ions?
Mol Cell Proteomics. 2025 May;24(5):100896. doi: 10.1016/j.mcpro.2024.100896. Epub 2025 Feb 13.
4
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
ACS Meas Sci Au. 2024 Jun 4;4(4):338-417. doi: 10.1021/acsmeasuresciau.3c00068. eCollection 2024 Aug 21.
5
Instrumentation at the Leading Edge of Proteomics.
Anal Chem. 2024 May 21;96(20):7976-8010. doi: 10.1021/acs.analchem.3c04497. Epub 2024 May 13.
7
Custom Workflow for the Confident Identification of Sulfotyrosine-Containing Peptides and Their Discrimination from Phosphopeptides.
J Proteome Res. 2023 Dec 1;22(12):3754-3772. doi: 10.1021/acs.jproteome.3c00425. Epub 2023 Nov 8.
8
Top-Down Proteomics and the Challenges of True Proteoform Characterization.
J Proteome Res. 2023 Dec 1;22(12):3663-3675. doi: 10.1021/acs.jproteome.3c00416. Epub 2023 Nov 8.
9
Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond.
Chem Commun (Camb). 2023 Sep 26;59(77):11484-11499. doi: 10.1039/d3cc02909c.
10
Mapping the O-GlcNAc Modified Proteome: Applications for Health and Disease.
Front Mol Biosci. 2022 May 19;9:920727. doi: 10.3389/fmolb.2022.920727. eCollection 2022.

本文引用的文献

1
Why Are B ions stable species in peptide spectra?
J Am Soc Mass Spectrom. 1995 Dec;6(12):1165-74. doi: 10.1016/1044-0305(95)00569-2.
2
Advancing proteomics with ion/ion chemistry.
Biotechniques. 2006 Jun;40(6):783-9. doi: 10.2144/000112194.
6
Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction.
J Am Soc Mass Spectrom. 2006 Apr;17(4):576-585. doi: 10.1016/j.jasms.2005.12.015. Epub 2006 Feb 28.
8
Parallel ion parking of protein mixtures.
Anal Chem. 2006 Jan 1;78(1):310-6. doi: 10.1021/ac0515778.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验