Suppr超能文献

一种新型二维超声心动图图像分析系统,利用人工智能学习的模式识别技术实现快速自动计算射血分数。

A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction.

作者信息

Cannesson Maxime, Tanabe Masaki, Suffoletto Matthew S, McNamara Dennis M, Madan Shobhit, Lacomis Joan M, Gorcsan John

机构信息

Cardiovascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213-2582, USA.

出版信息

J Am Coll Cardiol. 2007 Jan 16;49(2):217-26. doi: 10.1016/j.jacc.2006.08.045. Epub 2006 Dec 29.

Abstract

OBJECTIVES

We sought to test the hypothesis that a novel 2-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition can rapidly and reproducibly calculate ejection fraction (EF).

BACKGROUND

Echocardiographic EF by manual tracing is time consuming, and visual assessment is inherently subjective.

METHODS

We studied 218 patients (72 female), including 165 with abnormal left ventricular (LV) function. Auto EF incorporated a database trained on >10,000 human EF tracings to automatically locate and track the LV endocardium from routine grayscale digital cineloops and calculate EF in 15 s. Auto EF results were independently compared with manually traced biplane Simpson's rule, visual EF, and magnetic resonance imaging (MRI) in a subset.

RESULTS

Auto EF was possible in 200 (92%) of consecutive patients, of which 77% were completely automated and 23% required manual editing. Auto EF correlated well with manual EF (r = 0.98; 6% limits of agreement) and required less time per patient (48 +/- 26 s vs. 102 +/- 21 s; p < 0.01). Auto EF correlated well with visual EF by expert readers (r = 0.96; p < 0.001), but interobserver variability was greater (3.4 +/- 2.9% vs. 9.8 +/- 5.7%, respectively; p < 0.001). Visual EF was less accurate by novice readers (r = 0.82; 19% limits of agreement) and improved with trainee-operated Auto EF (r = 0.96; 7% limits of agreement). Auto EF also correlated with MRI EF (n = 21) (r = 0.95; 12% limits of agreement), but underestimated absolute volumes (r = 0.95; bias of -36 +/- 27 ml overall).

CONCLUSIONS

Auto EF can automatically calculate EF similarly to results by manual biplane Simpson's rule and MRI, with less variability than visual EF, and has clinical potential.

摘要

目的

我们试图验证一个假设,即使用人工智能学习模式识别的新型二维超声心动图图像分析系统能够快速且可重复地计算射血分数(EF)。

背景

通过手动描记来测定超声心动图EF耗时,且视觉评估本质上具有主观性。

方法

我们研究了218例患者(72例女性),其中165例左心室(LV)功能异常。自动EF纳入了一个基于超过10000份人类EF描记训练的数据库,以从常规灰度数字电影环中自动定位和追踪LV心内膜,并在15秒内计算EF。在一个亚组中,将自动EF的结果与手动双平面辛普森法则、视觉EF以及磁共振成像(MRI)的结果进行独立比较。

结果

在连续的200例(92%)患者中可以进行自动EF计算,其中77%完全自动化,23%需要人工编辑。自动EF与手动EF相关性良好(r = 0.98;一致性界限为6%),且每位患者所需时间更少(48±26秒对102±21秒;p < 0.01)。自动EF与专家读者的视觉EF相关性良好(r = 0.96;p < 0.001),但观察者间变异性更大(分别为3.4±2.9%对9.8±5.7%;p < 0.001)。新手读者的视觉EF准确性较低(r = 0.82;一致性界限为19%),而在实习医生操作的自动EF辅助下有所提高(r = 0.96;一致性界限为7%)。自动EF也与MRI的EF相关(n = 21)(r = 0.95;一致性界限为12%),但低估了绝对容积(r = 0.95;总体偏差为 -36±27 ml)。

结论

自动EF能够像手动双平面辛普森法则和MRI那样自动计算EF,变异性小于视觉EF,具有临床应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验