Suppr超能文献

对Affymetrix基因芯片中映射到同一基因的多个探针集的解读。

Interpretation of multiple probe sets mapping to the same gene in Affymetrix GeneChips.

作者信息

Stalteri Maria A, Harrison Andrew P

机构信息

Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK.

出版信息

BMC Bioinformatics. 2007 Jan 15;8:13. doi: 10.1186/1471-2105-8-13.

Abstract

BACKGROUND

Affymetrix GeneChip technology enables the parallel observations of tens of thousands of genes. It is important that the probe set annotations are reliable so that biological inferences can be made about genes which undergo differential expression. Probe sets representing the same gene might be expected to show similar fold changes/z-scores, however this is in fact not the case.

RESULTS

We have made a case study of the mouse Surf4, chosen because it is a gene that was reported to be represented by the same eight probe sets on the MOE430A array by both Affymetrix and Bioconductor in early 2004. Only five of the probe sets actually detect Surf4 transcripts. Two of the probe sets detect splice variants of Surf2. We have also studied the expression changes of the eight probe sets in a public-domain microarray experiment. The transcripts for Surf4 are correlated in time, and similarly the transcripts for Surf2 are also correlated in time. However, the transcripts for Surf4 and Surf2 are not correlated. This proof of principle shows that observations of expression can be used to confirm, or otherwise, annotation discrepancies. We have also investigated groups of probe sets on the RAE230A array that are assigned to the same LocusID, but which show large variances in differential expression in any one of three different experiments on rat. The probe set groups with high variances are found to represent cases of alternative splicing, use of alternative poly(A) signals, or incorrect annotations.

CONCLUSION

Our results indicate that some probe sets should not be considered as unique measures of transcription, because the individual probes map to more than one transcript dependent upon the biological condition. Our results highlight the need for care when assessing whether groups of probe sets all measure the same transcript.

摘要

背景

Affymetrix基因芯片技术能够对成千上万的基因进行并行观测。探针集注释可靠至关重要,这样才能对经历差异表达的基因进行生物学推断。代表同一基因的探针集可能预期会显示相似的倍数变化/z分数,然而实际情况并非如此。

结果

我们以小鼠Surf4为例进行了案例研究,选择它是因为在2004年初,Affymetrix和Bioconductor都报告称该基因在MOE430A阵列上由相同的八个探针集代表。实际上只有五个探针集能检测到Surf4转录本。其中两个探针集检测到的是Surf2的剪接变体。我们还在一个公共领域的微阵列实验中研究了这八个探针集的表达变化。Surf4的转录本在时间上具有相关性,同样,Surf2的转录本在时间上也具有相关性。然而,Surf4和Surf2的转录本不相关。这个原理证明表明,表达观测可用于确认或发现注释差异。我们还研究了RAE230A阵列上被分配到相同基因座标识但在大鼠的三个不同实验中的任何一个中差异表达显示出很大差异的探针集组。发现具有高差异的探针集组代表了可变剪接、使用可变聚腺苷酸化信号或注释错误的情况。

结论

我们的结果表明,一些探针集不应被视为转录的唯一测量指标,因为根据生物学条件,单个探针可映射到多个转录本。我们的结果强调了在评估一组探针集是否都测量同一转录本时需要谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b75/1784106/9667d52019ea/1471-2105-8-13-1.jpg

相似文献

1
Interpretation of multiple probe sets mapping to the same gene in Affymetrix GeneChips.
BMC Bioinformatics. 2007 Jan 15;8:13. doi: 10.1186/1471-2105-8-13.
2
Comparisons of annotation predictions for affymetrix GeneChips.
Appl Bioinformatics. 2006;5(4):237-48. doi: 10.2165/00822942-200605040-00006.
4
AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets.
Bioinformatics. 2007 Sep 15;23(18):2385-90. doi: 10.1093/bioinformatics/btm360. Epub 2007 Jul 27.
5
Alternative mRNA polyadenylation can potentially affect detection of gene expression by affymetrix genechip arrays.
Appl Bioinformatics. 2006;5(4):249-53. doi: 10.2165/00822942-200605040-00007.
7
Transcript-specific expression profiles derived from sequence-based analysis of standard microarrays.
PLoS One. 2009;4(3):e4702. doi: 10.1371/journal.pone.0004702. Epub 2009 Mar 11.
8
10

引用本文的文献

2
mRNA expression analysis of the hippocampus in a vervet monkey model of fetal alcohol spectrum disorder.
J Neurodev Disord. 2022 Mar 19;14(1):21. doi: 10.1186/s11689-022-09427-z.
3
Effects of gamma-aminobutyric acid and piperine on gene regulation in pig kidney epithelial cell lines.
Asian-Australas J Anim Sci. 2020 Sep;33(9):1497-1506. doi: 10.5713/ajas.19.0745. Epub 2019 Dec 24.
4
Applications of Bayesian network models in predicting types of hematological malignancies.
Sci Rep. 2018 May 3;8(1):6951. doi: 10.1038/s41598-018-24758-5.
5
Disease relevant modifications of the methylome and transcriptome by particulate matter (PM) from biomass combustion.
Epigenetics. 2017 Sep;12(9):779-792. doi: 10.1080/15592294.2017.1356555. Epub 2017 Oct 27.
6
Identifying Significant Features in Cancer Methylation Data Using Gene Pathway Segmentation.
Cancer Inform. 2016 Sep 20;15:189-98. doi: 10.4137/CIN.S39859. eCollection 2016.
7
Systems proteomics of liver mitochondria function.
Science. 2016 Jun 10;352(6291):aad0189. doi: 10.1126/science.aad0189.
8
SMARCA4/BRG1 Is a Novel Prognostic Biomarker Predictive of Cisplatin-Based Chemotherapy Outcomes in Resected Non-Small Cell Lung Cancer.
Clin Cancer Res. 2016 May 15;22(10):2396-404. doi: 10.1158/1078-0432.CCR-15-1468. Epub 2015 Dec 15.
9
Stormbow: A Cloud-Based Tool for Reads Mapping and Expression Quantification in Large-Scale RNA-Seq Studies.
ISRN Bioinform. 2013 Sep 11;2013:481545. doi: 10.1155/2013/481545. eCollection 2013.
10
Analysis of discordant Affymetrix probesets casts serious doubt on idea of microarray data reutilization.
BMC Genomics. 2014;15 Suppl 12(Suppl 12):S8. doi: 10.1186/1471-2164-15-S12-S8. Epub 2014 Dec 19.

本文引用的文献

1
Tandem chimerism as a means to increase protein complexity in the human genome.
Genome Res. 2006 Jan;16(1):37-44. doi: 10.1101/gr.4145906. Epub 2005 Dec 12.
2
Transcription-mediated gene fusion in the human genome.
Genome Res. 2006 Jan;16(1):30-6. doi: 10.1101/gr.4137606. Epub 2005 Dec 12.
3
Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data.
Nucleic Acids Res. 2005 Nov 10;33(20):e175. doi: 10.1093/nar/gni179.
4
A physiogenomic approach to study the regulation of blood pressure.
Physiol Genomics. 2005 Sep 21;23(1):46-53. doi: 10.1152/physiolgenomics.00077.2005. Epub 2005 Jun 7.
5
Study of stem cell function using microarray experiments.
FEBS Lett. 2005 Mar 21;579(8):1795-801. doi: 10.1016/j.febslet.2005.02.020.
7
Detecting false expression signals in high-density oligonucleotide arrays by an in silico approach.
Genomics. 2005 Mar;85(3):297-308. doi: 10.1016/j.ygeno.2004.11.004.
8
NCBI GEO: mining millions of expression profiles--database and tools.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D562-6. doi: 10.1093/nar/gki022.
9
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.
10
Alternative mapping of probes to genes for Affymetrix chips.
BMC Bioinformatics. 2004 Aug 14;5:111. doi: 10.1186/1471-2105-5-111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验