Moll Anton G, Lindenmeyer Maja T, Kretzler Matthias, Nelson Peter J, Zimmer Ralf, Cohen Clemens D
Institute of Physiology and Clinic for Nephrology, University of Zürich, Zürich, Switzerland.
PLoS One. 2009;4(3):e4702. doi: 10.1371/journal.pone.0004702. Epub 2009 Mar 11.
Alternative mRNA processing mechanisms lead to multiple transcripts (i.e. splice isoforms) of a given gene which may have distinct biological functions. Microarrays like Affymetrix GeneChips measure mRNA expression of genes using sets of nucleotide probes. Until recently probe sets were not designed for transcript specificity. Nevertheless, the re-analysis of established microarray data using newly defined transcript-specific probe sets may provide information about expression levels of specific transcripts.
METHODOLOGY/PRINCIPAL FINDINGS: In the present study alignment of probe sequences of the Affymetrix microarray HG-U133A with Ensembl transcript sequences was performed to define transcript-specific probe sets. Out of a total of 247,965 perfect match probes, 95,008 were designated "transcript-specific", i.e. showing complete sequence alignment, no cross-hybridization, and transcript-, not only gene-specificity. These probes were grouped into 7,941 transcript-specific probe sets and 15,619 gene-specific probe sets, respectively. The former were used to differentiate 445 alternative transcripts of 215 genes. For selected transcripts, predicted by this analysis to be differentially expressed in the human kidney, confirmatory real-time RT-PCR experiments were performed. First, the expression of two specific transcripts of the genes PPM1A (PP2CA_HUMAN and P35813) and PLG (PLMN_HUMAN and Q5TEH5) in human kidneys was determined by the transcript-specific array analysis and confirmed by real-time RT-PCR. Secondly, disease-specific differential expression of single transcripts of PLG and ABCA1 (ABCA1_HUMAN and Q5VYS0_HUMAN) was computed from the available array data sets and confirmed by transcript-specific real-time RT-PCR.
Transcript-specific analysis of microarray experiments can be employed to study gene-regulation on the transcript level using conventional microarray data. In this study, predictions based on sufficient probe set size and fold-change are confirmed by independent means.
可变mRNA加工机制可导致给定基因产生多个转录本(即剪接异构体),这些转录本可能具有不同的生物学功能。像Affymetrix基因芯片这样的微阵列使用核苷酸探针集来测量基因的mRNA表达。直到最近,探针集还不是为转录本特异性而设计的。然而,使用新定义的转录本特异性探针集对已建立的微阵列数据进行重新分析,可能会提供有关特定转录本表达水平的信息。
方法/主要发现:在本研究中,将Affymetrix微阵列HG-U133A的探针序列与Ensembl转录本序列进行比对,以定义转录本特异性探针集。在总共247,965个完全匹配探针中,95,008个被指定为“转录本特异性”,即显示出完全的序列比对、无交叉杂交,并且不仅具有基因特异性,还具有转录本特异性。这些探针分别被分组为7,941个转录本特异性探针集和15,619个基因特异性探针集。前者用于区分215个基因的445个可变转录本。对于通过该分析预测在人肾中差异表达的选定转录本,进行了验证性实时RT-PCR实验。首先,通过转录本特异性阵列分析确定基因PPM1A(PP2CA_HUMAN和P35813)和PLG(PLMN_HUMAN和Q5TEH5)的两个特定转录本在人肾中的表达,并通过实时RT-PCR进行验证。其次,从可用的阵列数据集计算PLG和ABCA1(ABCA1_HUMAN和Q5VYS0_HUMAN)单个转录本的疾病特异性差异表达,并通过转录本特异性实时RT-PCR进行验证。
微阵列实验的转录本特异性分析可用于利用传统微阵列数据在转录水平上研究基因调控。在本研究中,基于足够的探针集大小和倍数变化的预测通过独立方法得到了验证。