Suppr超能文献

从标准微阵列的基于序列的分析中获得的转录本特异性表达谱。

Transcript-specific expression profiles derived from sequence-based analysis of standard microarrays.

作者信息

Moll Anton G, Lindenmeyer Maja T, Kretzler Matthias, Nelson Peter J, Zimmer Ralf, Cohen Clemens D

机构信息

Institute of Physiology and Clinic for Nephrology, University of Zürich, Zürich, Switzerland.

出版信息

PLoS One. 2009;4(3):e4702. doi: 10.1371/journal.pone.0004702. Epub 2009 Mar 11.

Abstract

BACKGROUND

Alternative mRNA processing mechanisms lead to multiple transcripts (i.e. splice isoforms) of a given gene which may have distinct biological functions. Microarrays like Affymetrix GeneChips measure mRNA expression of genes using sets of nucleotide probes. Until recently probe sets were not designed for transcript specificity. Nevertheless, the re-analysis of established microarray data using newly defined transcript-specific probe sets may provide information about expression levels of specific transcripts.

METHODOLOGY/PRINCIPAL FINDINGS: In the present study alignment of probe sequences of the Affymetrix microarray HG-U133A with Ensembl transcript sequences was performed to define transcript-specific probe sets. Out of a total of 247,965 perfect match probes, 95,008 were designated "transcript-specific", i.e. showing complete sequence alignment, no cross-hybridization, and transcript-, not only gene-specificity. These probes were grouped into 7,941 transcript-specific probe sets and 15,619 gene-specific probe sets, respectively. The former were used to differentiate 445 alternative transcripts of 215 genes. For selected transcripts, predicted by this analysis to be differentially expressed in the human kidney, confirmatory real-time RT-PCR experiments were performed. First, the expression of two specific transcripts of the genes PPM1A (PP2CA_HUMAN and P35813) and PLG (PLMN_HUMAN and Q5TEH5) in human kidneys was determined by the transcript-specific array analysis and confirmed by real-time RT-PCR. Secondly, disease-specific differential expression of single transcripts of PLG and ABCA1 (ABCA1_HUMAN and Q5VYS0_HUMAN) was computed from the available array data sets and confirmed by transcript-specific real-time RT-PCR.

CONCLUSIONS

Transcript-specific analysis of microarray experiments can be employed to study gene-regulation on the transcript level using conventional microarray data. In this study, predictions based on sufficient probe set size and fold-change are confirmed by independent means.

摘要

背景

可变mRNA加工机制可导致给定基因产生多个转录本(即剪接异构体),这些转录本可能具有不同的生物学功能。像Affymetrix基因芯片这样的微阵列使用核苷酸探针集来测量基因的mRNA表达。直到最近,探针集还不是为转录本特异性而设计的。然而,使用新定义的转录本特异性探针集对已建立的微阵列数据进行重新分析,可能会提供有关特定转录本表达水平的信息。

方法/主要发现:在本研究中,将Affymetrix微阵列HG-U133A的探针序列与Ensembl转录本序列进行比对,以定义转录本特异性探针集。在总共247,965个完全匹配探针中,95,008个被指定为“转录本特异性”,即显示出完全的序列比对、无交叉杂交,并且不仅具有基因特异性,还具有转录本特异性。这些探针分别被分组为7,941个转录本特异性探针集和15,619个基因特异性探针集。前者用于区分215个基因的445个可变转录本。对于通过该分析预测在人肾中差异表达的选定转录本,进行了验证性实时RT-PCR实验。首先,通过转录本特异性阵列分析确定基因PPM1A(PP2CA_HUMAN和P35813)和PLG(PLMN_HUMAN和Q5TEH5)的两个特定转录本在人肾中的表达,并通过实时RT-PCR进行验证。其次,从可用的阵列数据集计算PLG和ABCA1(ABCA1_HUMAN和Q5VYS0_HUMAN)单个转录本的疾病特异性差异表达,并通过转录本特异性实时RT-PCR进行验证。

结论

微阵列实验的转录本特异性分析可用于利用传统微阵列数据在转录水平上研究基因调控。在本研究中,基于足够的探针集大小和倍数变化的预测通过独立方法得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4539/2650090/e1c1f3f554af/pone.0004702.g001.jpg

相似文献

1
Transcript-specific expression profiles derived from sequence-based analysis of standard microarrays.
PLoS One. 2009;4(3):e4702. doi: 10.1371/journal.pone.0004702. Epub 2009 Mar 11.
2
AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets.
Bioinformatics. 2007 Sep 15;23(18):2385-90. doi: 10.1093/bioinformatics/btm360. Epub 2007 Jul 27.
3
TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.
BMC Genomics. 2013 Dec 27;14:922. doi: 10.1186/1471-2164-14-922.
7
Interpretation of multiple probe sets mapping to the same gene in Affymetrix GeneChips.
BMC Bioinformatics. 2007 Jan 15;8:13. doi: 10.1186/1471-2105-8-13.
8
Long versus short oligonucleotide microarrays for the study of gene expression in nonhuman primates.
J Neurosci Methods. 2006 Apr 15;152(1-2):179-89. doi: 10.1016/j.jneumeth.2005.09.007. Epub 2005 Oct 25.
9
Uncovering the expression patterns of chimeric transcripts using surveys of affymetrix GeneChips.
J Integr Bioinform. 2010 Mar 25;7(3):460. doi: 10.2390/biecoll-jib-2010-137.

引用本文的文献

1
CLEC5A mRNA expression analysis to predict Dengue susceptibility in cancer patients.
Biochem Biophys Rep. 2023 Jun 26;35:101501. doi: 10.1016/j.bbrep.2023.101501. eCollection 2023 Sep.
2
MPC1 deletion is associated with poor prognosis and temozolomide resistance in glioblastoma.
J Neurooncol. 2019 Sep;144(2):293-301. doi: 10.1007/s11060-019-03226-8. Epub 2019 Jun 24.
3
Glioblastoma Multiforme: Fewer Tumor Copy Number Segments of the Gene Are Associated with Poorer Survival.
Cancer Genomics Proteomics. 2018 Jul-Aug;15(4):273-278. doi: 10.21873/cgp.20085.
4
Transcriptional networks of murine diabetic peripheral neuropathy and nephropathy: common and distinct gene expression patterns.
Diabetologia. 2016 Jun;59(6):1297-306. doi: 10.1007/s00125-016-3913-8. Epub 2016 Mar 21.
5
A Transcriptional Map of the Renal Tubule: Linking Structure to Function.
J Am Soc Nephrol. 2015 Nov;26(11):2603-5. doi: 10.1681/ASN.2015030242. Epub 2015 Mar 27.
6
Genome-wide analysis of alternative splicing in Volvox carteri.
BMC Genomics. 2014 Dec 16;15:1117. doi: 10.1186/1471-2164-15-1117.
7
A novel PCR-based approach to discover miRNA target genes.
Int J Med Sci. 2014 Oct 11;11(12):1270-4. doi: 10.7150/ijms.9343. eCollection 2014.
8
Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis.
Target Oncol. 2015 Jun;10(2):215-27. doi: 10.1007/s11523-014-0323-z. Epub 2014 Jun 22.
9
TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.
BMC Genomics. 2013 Dec 27;14:922. doi: 10.1186/1471-2164-14-922.

本文引用的文献

2
Understanding the physics of oligonucleotide microarrays: the Affymetrix spike-in data reanalysed.
Phys Biol. 2008 Mar 27;5(1):016004. doi: 10.1088/1478-3975/5/1/016004.
3
Novel definition files for human GeneChips based on GeneAnnot.
BMC Bioinformatics. 2007 Nov 15;8:446. doi: 10.1186/1471-2105-8-446.
4
AffyProbeMiner: a web resource for computing or retrieving accurately redefined Affymetrix probe sets.
Bioinformatics. 2007 Sep 15;23(18):2385-90. doi: 10.1093/bioinformatics/btm360. Epub 2007 Jul 27.
6
Splicy: a web-based tool for the prediction of possible alternative splicing events from Affymetrix probeset data.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S17. doi: 10.1186/1471-2105-8-S1-S17.
10
Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action.
J Am Soc Nephrol. 2006 Nov;17(11):2999-3012. doi: 10.1681/ASN.2006050503. Epub 2006 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验