Suppr超能文献

使用联合用户特定和样本自举法的生物特征认证中的性能泛化

Performance generalization in biometric authentication using joint user-specific and sample bootstraps.

作者信息

Poh Norman, Martin Alvin, Bengio Samy

机构信息

IDIAP Research Institute, Martigny, Switzerland.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Mar;29(3):492-8. doi: 10.1109/TPAMI.2007.55.

Abstract

Biometric authentication performance is often depicted by a detection error trade-off (DET) curve. We show that this curve is dependent on the choice of samples available, the demographic composition and the number of users specific to a database. We propose a two-step bootstrap procedure to take into account the three mentioned sources of variability. This is an extension to the Bolle et al.'s bootstrap subset technique. Preliminary experiments on the NIST2005 and XM2VTS benchmark databases are encouraging, e.g., the average result across all 24 systems evaluated on NIST2005 indicates that one can predict, with more than 75 percent of DET coverage, an unseen DET curve with eight times more users. Furthermore, our finding suggests that with more data available, the confidence intervals become smaller and, hence, more useful.

摘要

生物特征认证性能通常由检测错误权衡(DET)曲线来描述。我们表明,这条曲线取决于可用样本的选择、人口构成以及特定数据库的用户数量。我们提出了一种两步引导程序,以考虑上述三种变异性来源。这是对博勒等人的引导子集技术的扩展。在NIST2005和XM2VTS基准数据库上进行的初步实验令人鼓舞,例如,在NIST2005上评估的所有24个系统的平均结果表明,人们可以以超过75%的DET覆盖率预测用户数量多出八倍的未见过的DET曲线。此外,我们的发现表明,有了更多可用数据,置信区间会变小,因此更有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验