Derreumaux Philippe, Mousseau Normand
Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico, Chimique et Université Paris 7, 13 Rue Pierre et Marie Curie, 75005 Paris, France.
J Chem Phys. 2007 Jan 14;126(2):025101. doi: 10.1063/1.2408414.
A limiting factor in biological science is the time-scale gap between experimental and computational trajectories. At this point, all-atom explicit solvent molecular dynamics (MD) are clearly too expensive to explore long-range protein motions and extract accurate thermodynamics of proteins in isolated or multimeric forms. To reach the appropriate time scale, we must then resort to coarse graining. Here we couple the coarse-grained OPEP model, which has already been used with activated methods, to MD simulations. Two test cases are studied: the stability of three proteins around their experimental structures and the aggregation mechanisms of the Alzheimer's Abeta16-22 peptides. We find that coarse-grained isolated proteins are stable at room temperature within 50 ns time scale. Based on two 220 ns trajectories starting from disordered chains, we find that four Abeta16-22 peptides can form a three-stranded beta sheet. We also demonstrate that the reptation move of one chain over the others, first observed using the activation-relaxation technique, is a kinetically important mechanism during aggregation. These results show that MD-OPEP is a particularly appropriate tool to study qualitatively the dynamics of long biological processes and the thermodynamics of molecular assemblies.
生物科学中的一个限制因素是实验轨迹和计算轨迹之间的时间尺度差距。在这一点上,全原子显式溶剂分子动力学(MD)显然过于昂贵,无法探索蛋白质的长程运动以及提取孤立或多聚形式蛋白质的准确热力学信息。为了达到合适的时间尺度,我们必须求助于粗粒化方法。在这里,我们将已经与活化方法一起使用的粗粒化OPEP模型与MD模拟相结合。研究了两个测试案例:三种蛋白质在其实验结构附近的稳定性以及阿尔茨海默病β-淀粉样蛋白16-22肽的聚集机制。我们发现,粗粒化的孤立蛋白质在室温下50纳秒的时间尺度内是稳定的。基于从无序链开始的两条220纳秒轨迹,我们发现四个β-淀粉样蛋白16-22肽可以形成一个三链β折叠。我们还证明,一条链在其他链上的蛇形移动,这是首次使用活化弛豫技术观察到的,是聚集过程中一个动力学上重要的机制。这些结果表明,MD-OPEP是定性研究长生物过程动力学和分子组装热力学的一个特别合适的工具。